K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2023

a)xét ΔABD và ΔAMD có:

     góc BAD= góc MAD(AD là tia phân giác )

       AD chung

      góc ABD = góc AMD(=90độ) (ΔABC ⊥B; DM⊥AC)

    ⇒ΔABD=ΔAMD(ch-cgv)

b)Có:AB=AM (ΔABD=ΔAMD)

⇒A ϵ đường trung trực của BC (t/c đường trung trực)(1)

 Lại có : BD=MD(ΔABD=ΔAMD)  

 ⇒D ϵ đường trung trực BM(t/c đường trung trực) (2)

Từ (1) và(2)⇒AD là đường trung trực BM

c)Xét ΔBNDvàΔMCD có:

    góc DBN =góc DMC (90độ)(ΔABC ⊥B; DM⊥AC)

   BD=MD(ΔABD=ΔAMD) 

   góc BDN=MDC(2 góc dối đỉnh)

⇒ ΔBND=ΔMCD(g.c.g)

⇒BN=MC(2 cạnh tương ứng)

Có: AB+BN=AN và AM+MC=AC

Mà  AB=AM(ΔABD=ΔAMD) và BN=MC (CMT)

⇒AN =AC

⇒ΔANC cân

Lại có góc A =60 độ

⇒ΔANC đều

A N B M I C D (Hình vẽ minh họa)

(hình vẽ minh họa)

28 tháng 6 2023

d)CÓ: AD là tia phân giác góc BAC

⇒góc BAD= góc CAD=1/2 góc BAC=1/2 . 60độ=30 độ

⇒góc BAI=30độ

Lại có: góc NBD=90độ(ΔABC⊥B)

⇒BI<ND(quan hệ giữa góc và cạnh đối diện)

28 tháng 4 2017

Bạn ơi, H ở đâu vậy

28 tháng 8 2021

Bạn xem lại ý a ( đề bài ) nhé. Mk nghĩ nó ntn 

undefined

28 tháng 8 2021

 C ơn

 

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với...
Đọc tiếp

Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.

Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.

Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:

a, tam giác GPI và tam giác GNC đồng dạng.

b, IC vuông góc với GI.

Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:

a,Tam giác IHE và tam giác BHA đồng dạng.

b, Tam giác BHI và tam giác AHE đồng dạng.

c, AE vuông góc với BI.

LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘

 

0
13 tháng 6 2018

a) Ta thấy ngay ΔABE = ΔACD  (Hai cạnh góc vuông)
b) Do ΔABE = ΔACD⇒^ABE =^ACD( ^ là góc nhé )
mà  ^ABE= ^MAC  (Cùng phụ với góc BEA)
⇒^MCA =^MAC  hay tam giác MAC cân tại M.
c) Xét tam giác vuông ADC: ^MCA =^MAC ⇒MDA=MAD =>MD=MA
Vậy thì DM = MA = MC hay M là trung điểm DC.
Xét tam giácAIC có M là trung điểm DC, MK // DI nên MK là đường trung bình tam giác DIC.
Suy ra K là trung điểm IC.
d) Xét tam giác DIC có IM và DK là hai trung tuyến nên G là trọng tâm tam giác.
Gọi N là giao điểm của CG với DE thì DN = NI.

ÁP dụng định lý TAlet

MF/DN=CF/CN=FK/NI

Mà DN=NI =>MF+FK

13 tháng 6 2018

Banj Tự vẽ hình nhé

13 tháng 4 2019

a. Xét  AFC và  AEB có:

\(\widehat{BAC}\) chung

\(\widehat{AFC}=\widehat{AEB}=90^0\)

 AFC đồng dạng với  AEB(g.g)

⇒ \(\frac{AF}{AE}=\frac{AC}{AB}\)

 \(AB.AF=AE.AC\)

\(\frac{AF}{AE}=\frac{AC}{AB}\Rightarrow\frac{AF}{AC}=\frac{AE}{AB}\)

Xét  AEF và  ABC có :

\(\widehat{BAC}\) chung

\(\frac{AF}{AC}=\frac{AE}{AB}\left(cmt\right)\)

 AEF đồng dạng với  ABC (c.g.c)

Mấy câu kia bạn tự làm nốt đi nhá.