Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Maii Tômm (Libra) - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
a. Ta có: \(\Delta ABC\) vuông tại \(A\)
\(\Rightarrow\) \(S_{\Delta ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AB.AC\)
\(\Rightarrow AH.BC=AB.AC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}\)
\(\Rightarrow\)\(\frac{1}{AH}=\frac{BC}{AB.AC}\)
\(\Rightarrow\)\(\frac{1}{AH^2}=\frac{BC^2}{AB^2.AC^2}\) (1)
Lại có: \(BC^2=AB^2+AC^2\) (định lý Pi-ta-go)
(1) \(\Rightarrow\) \(\frac{1}{AH^2}=\frac{AB^2+AC^2}{AB^2+AC^2}\)
\(\Rightarrow\) \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\) (đpcm)
cho tam giác ABC vuông tại A . Kẻ đường cao AH
CMR : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
Hiện tại hình không vẽ được mình chỉ ghi lời giải thôi nha !
\(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{AB^2+AC^2}{AB^2\cdot AC^2}=\frac{BC^2}{AB^2\cdot AC^2}\)
Theo công thức tính diện tích tam giác vuông ta có:\(S=\frac{1}{2}AH.BC=\frac{1}{2}AB.AC\)
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH^2.BC^2=AB^2.AC^2\)
Khi đó \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{BC^2}{AB^2\cdot AC^2}=\frac{BC^2}{AH^2\cdot BC^2}=\frac{1}{AH^2}\)
=> đpcm