K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

Tự vẽ hình

a) Vì BM = MC ( đường trung tuyến AM )

EM = MN ( do E đối xứng với N qua M )

Nên BECN là hình bình hành ( Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường )

b) Vì BECN là hình bình hành ( câu a )

Nên BE = CN

Mà CN = AN ( do đường trung tuyến BN )

=> BE = AN (1)

Vì BECN là hình bình hành ( câu a )

Nên BE // CN

Hay BE // AN (2)

Từ (1) và (2) suy ra: BENA là hình bình hành

=> AE = BN ( Hai đường chéo bằng nhau )

c) Vì AE = BN ( câu b )

Mà BN = EC ( do hình bình hành BECN )

Nên AE = EC

=> Tam giác AEC cân tại E

6 tháng 12 2018
a,Tứ giac BECN có hai đường chéo giao nhau tại trung điểm mỗi đường nên =>BECN là hình bình hành

b,Ta có : Na=NC

Mà NC=BE =>BENC có:BE//AN (=NC) NA=BE =>BENA là hình bình hành Mà A=90 =>BENA là hình chữ nhật=>BN=AE =>N=90=>EN là đường trung trực của AC=>AE=CE (tính chất đường trung trực) c,=> Tam giac AEC cân tại E d,Goi AM giao BN tai O Tam giác EMK=Tam giac NMO (g.c.g) =>ON=EK O thuộc BN mà BN//EC =>ON//EC ON la đường trung bình của tam giác ACK =>ON=1/2KC hay EK=1/2KC
23 tháng 5 2015

a)ta có I là trung điểm của AC ( gt)

          I là trung điểm của MK(K dối xứng với M qua I)

=>AMCK là hình bình hành 

xét tam giác ABC cân tại A có 

AM là trung tuyến của tam giác ABC

=>AM cũng là đường cao của tam giác ABC

=>góc AMC =900

mà AMCK là hình bình hành =>AMCK là hình chữ nhật

b)ta có :KA=CM(AMCK là hình chữ nhật)

mà CM=MB nên KA=MB

Xét tam giác AMK vuông tại A và tam giác MAB vuông tại M

AM : cạnh chung

KA=MB(chứng minh trên)

Suy ra tam giác AMK=tam giác MAB(cgv-cgv)

=>góc AMK=góc BAM (2 góc tương ứng )

Mà hai góc này ở vị trí so le trong nên:

AB song song MK

ta lại có AB=KM(tam giác AMK=tam giác MAB)

=>AKMB là hình bình hành

c)ta có AMCK là hình vuông 

=>AM=CM

mà CM=BM(AM là trung tuyến của tam giác ABC)

nên AM=\(\frac{CM+BM}{2}+\frac{BC}{2}\)

=>tam giác ABC vuông cân tại A

Vậy tam giác ABC cần có thêm điều kiện là cân tại A thì AMCK là hình vuông

 

28 tháng 10 2017

chứng minh tứ giác là hình thoi đi các bạn ^_^

11 tháng 3 2020

A B C N M G E F I

a, xét tứ giác BICG có : 

M là trung điểm cuả BC do AM là trung tuyến (gt)

M là trung điểm của GI do I đx G qua M (gt)

=> BICG là hình bình hành (dh)

+ G là trọng tâm của tam giác ABC (gt)

=> GM = AG/2 và  GN = BG/2 (đl)

E; F lần lượt là trung điểm của  GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)

=> FG = GM và GN = GE 

=> G là trung điểm của FM và EN 

=> MNFE là hình bình hành (dh)

b, MNFE là hình bình hành (câu a)  

để MNFE là hình chữ nhật

<=> NE = FM 

có : NE = 2/3BN và FM = 2/3AM

<=> AM = BN  mà AM và BN là trung tuyến của tam giác ABC (Gt)

<=>  tam giác ABC cân tại C (đl)

c, khi BICG là hình thoi 

=> BG = CG 

BG và AG là trung tuyến => CG là trung tuyến

=> tam giác ABC cân tại A 

14 tháng 10 2019

a, xét tam giác IHE và tam giác BHA có : 

góc IHE = góc BHA = 90 

IH = HB do I đx B qua H (gt)

AH = HE do A đx E qua H (gT)

=> tam giác IHE = tam giác BHA (2cgv)

=> IE = AB (đn)

     góc EIH = góc HBA (đn) mà 2 góc này slt => IE // AB (đl)

=> IEBA là hình bnhf hành (dh/9

AB _|_ AC (gt)

IE // AB (cmt)

=> IE _|_ AC (đl)

15 tháng 12 2015

Em mới học lớp 6 thui ah. Xin lỗi vì không giúp được nha!

14 tháng 3 2020

A B C I N D M

a, xét tứ giác AMIN có : ^INA = ^NAM = ^AMI = 90

=> AMIN là hình chữ nhật

=> MN = AI (tc)

b, xét tứ giác CDAI có : N là trung điểm của AC (Gt)

N là trung điểm của DI do D đối xứng với I qua N (Gt)

=> CDAI là hình bình hành (dh)

AI là trung tuyến của tam giác vuông ABC (gt) => AI = BC/2 (tc)

I là trung điểm của BC (Gt) => CI = BC/2 (tc)

=> CDAI là hình thoi (dh)

c, CDAI là hình thoi (Câu b) 

để CDAI là hình thoi

<=> ^CIA = 90 mà AI là trung tuyến của tam giác ABC (gt)

<=> tam giác ABC cân tại A