Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; Xét tứ giácADMB có DM//AB và góc DAB=90 độ
nên ADMB là hình thang vuông
b: Xét ΔABC có
MD//AB
nên CD/CA=CM/CB=1/2
=>D là trung điểm của AC
Xét tứ giác AMCE có
D là trung điểm chung của AC và ME
nên AMCE là hình bình hành
mà MA=MC
nên AMCE là hình thoi
=>MA=AE
c: Vì F đối xứng với M qua AB
nên AM=AF
=>AF=AE
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác CMDE có
DM//CE
DM=CE
Do đó: CMDE là hình bình hành
b: Xét tứ giác AMCF có
E là trung điểm của AC
E là trung điểm của MF
Do đó: AMCF là hình bình hành
mà MA=MC
nên AMCF là hình thoi
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác CMDE có
DM//CE
DM=CE
Do đó: CMDE là hình bình hành
b: Xét tứ giác AMCF có
E là trung điểm của AC
E là trung điểm của MF
Do đó: AMCF là hình bình hành
mà MA=MC
nên AMCF là hình thoi
a, xét tam giác IHE và tam giác BHA có :
góc IHE = góc BHA = 90
IH = HB do I đx B qua H (gt)
AH = HE do A đx E qua H (gT)
=> tam giác IHE = tam giác BHA (2cgv)
=> IE = AB (đn)
góc EIH = góc HBA (đn) mà 2 góc này slt => IE // AB (đl)
=> IEBA là hình bnhf hành (dh/9
AB _|_ AC (gt)
IE // AB (cmt)
=> IE _|_ AC (đl)