K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

định lý hàm số sin: 
a/ \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\)2R 
=> a = 2R.sinA = 2R.sin[180o - (B+C)] = 2R.sin(B+C) 
và b = 2R.sinB; c = 2R.sinC thay vào (*) được: 
 \(\frac{2R\times sinB}{cosB}+\frac{2R\times sinC}{cosC}=\frac{2R\times sin\left(B+C\right)}{sinBsinC}\)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC) 
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC) 
<=> cosBcosC = sinB.sinC 
<=> cosBcosC - sinB.sinC = 0 
<=> cos(B+C) = 0 
<=> B+C = 90o 
vậy tam giác ABC vuông tại A

18 tháng 5 2016

b/cosB+c/cosC=a/sinB.sinC (*) 

Áp dụng định lý hàm số sin: 
a/sinA = b/sinB = c/sinC = 2R 
=> a = 2R.sinA = 2R.sin[1800 - (B+C)] = 2R.sin(B+C) 
và b = 2R.sinB; c = 2R.sinC thay vào (*) được: 
2R.sinB/cosB + 2RsinC/cosC = 2R.sin(B+C)/(sinB.sinC) 
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC) 
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC) 
<=> cosBcosC = sinB.sinC 
<=> cosBcosC - sinB.sinC = 0 
<=> cos(B+C) = 0 
<=> B+C = 900

25 tháng 8 2016

lần đầu e thấy thầy giải luôn 

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

A. \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\) (Loại)

Vì: Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)

Không đủ dữ kiện để suy ra \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\)

B. \(\frac{b}{{\sin A}} = \frac{a}{{\sin B}}\) (Loại)

Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \nRightarrow \frac{b}{{\sin A}} = \frac{a}{{\sin B}}\)

C. \(\sin B = \frac{{ - \sqrt 2 }}{2}\)(sai vì theo câu a, \(\sin B = \frac{{\sqrt 2 }}{2}\))

D. \({b^2} = {c^2} + {a^2} - 2ca\cos {135^o}.\)

Theo định lý cos ta có:

\({b^2} = {c^2} + {a^2} - 2ca.\cos B\) (*)

Mà \(\widehat B = {135^o} \Rightarrow \cos B = \cos {135^o}\).

Thay vào (*) ta được: \({b^2} = {c^2} + {a^2} - 2ca\;\cos {135^o}\)

=> D đúng.

Chọn D