Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha
a.
AB // MN
=> ABM = BMN (2 góc so le trong)
mà ABM = MBC (BM là tia phân giác của ABC)
=> MBC = BMN
AB // MN
=> ABN = MNC (2 góc đồng vị)
ABM = MBC = \(\frac{ABC}{2}\) (BM là tia phân giác của ABC)
MNP = PNC = \(\frac{MNC}{2}\) (NP là tia phân giác của MNC)
mà ABC = MNC ( chứng minh trên)
=> MBN = PNC
mà 2 góc này ở vị trí đồng vị
=> MB // NP
b.
Gọi H là giao điểm của MB và QN.
AB // MN
=> ABN + MNB = 1800 (2 góc trong cùng phía)
BM là tia phân giác của ABC
=> ABM = MBC = \(\frac{ABC}{2}\)
NQ là tia phân giác của MNB
=> BNQ = QNM = \(\frac{BNM}{2}\)
Tam giác HBN có:
MBN + BNQ + BHN = 1800
\(\frac{ABC}{2}+\frac{MNB}{2}+BHN=180^0\)
BHN = 1800 - \(\left(\frac{ABC+MNB}{2}\right)\)
BHN = 1800 - \(\frac{180^0}{2}\)
BHN = 1800 - 900
BHN = 900
Vậy QN _I_ MB
Chúc bạn học tốt
Ta có CE vuông góc AB (GT)
suy ra CE là đường cao (1)
Ta có BD vuông góc AC(GT)
suy ra BD là đường cao (2)
Mà BD giao CE tại H
Từ (1) và (2) suy ra H là trực tâm (định nghĩa )
suy ra AM vuông góc BC (1)
Ta có tam giác ABC cân tại A (GT)
suy ra AB=AC (định nghĩa )
Ta có AM vuông góc BC (CMT)
suy ra góc AMB = góc AMC = 90
Xét tam giác AMB và tam giác AMC có
AM chung
góc AMB = góc AMC =90
AB= AC(CMT)
suy ra tam giác AMB = tam giác AMC (ch-cgv)
suy ra M là trung điểm BC (2)
Từ (1) và (2) suy ra AM là đường trung trực của BC
OK rồi đó
a/ ta có M= <ACD ( cùng phụ với <ADC)
mà <M+ < MEA= 90
<ACD+ <ADC= 90
suy ra : <MEA=<ADC
xét tam giác MEA và ACD :
<MEA=<ADC(cmt)
AE=AD
2 tam giác này bằng nhau thep trường hợp : cạn góc vuông - góc nhọn kề
Júp với