Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không vẽ hình đc , sợ duyệt
a) Lấy \(E\)trên \(BC\)sao cho \(CDE=ADB\)
Tam giác \(CDE\)= tam giác \(ADB\left(g.g\right)\)
Tỉ số các đường cao tương đương với ứng bằng tỉ số đóng dạng :
\(\frac{DH}{DK}=\frac{CE}{AB}=\frac{x}{z}=\frac{CE}{c}=\frac{c}{z}=\frac{CE}{x}\left(1\right)\)
Tương tự \(\frac{b}{y}=\frac{BE}{x}\left(2\right)\)
Từ (1) và (2) ta suy ra : \(\frac{b}{y}+\frac{c}{z}=\frac{BE+CE}{x}=\frac{a}{x}\)
b) Xét S \(=\frac{a}{x}+\left(\frac{b}{y}+\frac{c}{z}\right)=\frac{a}{x}+\frac{a}{x}=\frac{2a}{x}\). Do đó :
S nhỏ nhất \(\frac{a}{x}\)nhỏ nhất = x lớn nhất = \(D=M\)( M là điểm chính giữa của cung BC không chứa A )
HT
Mệt
Kẻ AH ⊥ DE tại H
D A E ^ = 2 B A C ^
=> D A H ^ = B A C ^
Từ DE=2DH; AD=AM=AE
Suy ra DH=AD.sin D A H ^
Từ đó D E m a x <=> AM = 2R
dễ dàng nhận thấy AHDI là hình chữ nhật do đó AHDI nội tiếp đường tròn.
tam giác HDI là tam giác vuông tại D đường tròn ngoại tiếp tam giác HDI có tâm (O) là trung điểm của DI mà DI là đường trung trực của DE do đó OD=OE vậy E cũng thuộc đường tròn ngoại tiếp tam giác HDI do đó HDIE là tứ giác nội tiếp.
tâm (O) của đường tròn ngoại tiếp tứ giác HDIE là trung điểm của DI.
do HDIE là tứ giác nội tiếp và AHDI cũng là tứ giác nội tiếp nên A,H,D,I,E cùng thuộc một đường tròn