\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

Do đo; ΔCDA đồng dạng với ΔCEB

Suy ra: CD/CE=CA/CB

hay \(CD\cdot CB=CE\cdot CA\left(1\right)\)

b": Xét ΔCIB vuông tại I có ID là đường cao

nên \(CD\cdot CB=CI^2\left(2\right)\)

Xét ΔCQA vuông tại Q có QE là đường cao

nên \(CE\cdot CA=CQ^2\left(3\right)\)

Từ (1), (2) và (3)suy ra CI=CQ

a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

góc C chung

Do đó: ΔCDA đồng dạng với ΔCEB

Suy ra: CD/CE=CA/CB

hay \(CD\cdot CB=CE\cdot CA\left(1\right)\)

b: Xét ΔCIB vuông tại I có ID là đường cao

nên \(CI^2=CD\cdot CB\left(2\right)\)

Xét ΔCQA vuông tại Q có QE là đường cao

nên \(CQ^2=CE\cdot CA\left(3\right)\)

Từ (1), (2)và (3) suy ra CI=CQ

hay ΔCIQ cân tại C

20 tháng 11 2018

3. A B C D P Q I

20 tháng 11 2018

Trên tia đối của tia BA lấy I sao cho BI = DQ

\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)

Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)

Ta có: \(AP+AQ+PQ=2AB\)

\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)

\(\Rightarrow PQ=PB+QD\)

\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)

\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)

23 tháng 6 2017

a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ

cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2

TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2  ÁP DỤNG PITA GO TÌM RA CẠNH bc 

b,

23 tháng 6 2017

sao lại \(\frac{1}{\sqrt{2}}\) ?

17 tháng 9 2017

Đề sai sai @@?

18 tháng 9 2017

đề đúng mà bạn 

4 tháng 8 2017

â)Cm tam giác CBK đồng dạng với tam giác CDH(g.g) (tự cm nha )

>>>CK/CH=CB/CD(đpcm)

b)CK/CH=CB/CD>>>CK/CB=CH/CD=CH/AB.Mà HCK=90 độ +KCB=ABC

>>>Tam giác CKH đồng dạng tam giác BCA(đpcm)

c)>>>HK/AC=CK/BC=sinKBC=sinBAD>>>HK=AC.sinBAD(đpcm)

4 tháng 8 2017

câu b mình ko hiểu cho lắm bạn có giải thích rõ hơn đc ko

27 tháng 4 2019

O A B C D E F H K P Q x y S T

a, Xét tứ giác BFEC có ^BFC = ^BEC = 90o

=> Tứ giác BFEC nội tiếp

     Xét tứ giác CEHD có ^CEH = ^CDH = 90o 

=> tứ giác CEHD nội tiếp

b, Tứ giác BFEC nội tiếp => ^AFE = ^ACB

Mà ^ACB = ^BAx (góc tạo bởi tia tiếp tuyến và dây cung)

=> ^AFE = ^BAx 

=> xy // EF  (so le trong) 

Mà OA _|_ xy (tiếp tuyến)

=> OA _|_ EF

hay OA _|_ PQ

*Vì AQCB nội tiếp 

=> ^AQC + ^ABC = 180o (1)

Và ^AEF = ^ABC (2) 

Lại có ^AEF + ^AEQ = 180o (3)

Từ (1) ; (2) và (3) => ^AEQ = ^AQC

Còn câu c mình chưa nghĩ ra , có lẽ là chứng minh tứ  giác CEPT nội tiếp ...