K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

Trả lời..............

Theo mình làm là ..........

a, Chứng minh tứ giác ADHB nội tiết có:ADB=900(AD vuông với BE)

AHB=900 (AH là đường cao)

Suy ra:ADB=AHB=900

Vậy tứ giác ABHB nội tiếp đường tròn đường kính AB

Tâm O đường tròn là trung điểm AB

b, Chứng minh EAD=HBD

Do AB vuông góc vớiAB

Suy ra EAD =ABD (1)

Mà ABD=HBD (2)

Từ (1) và (2) ta được EAD=HBD

Chứng minh OD sOng song OB

Ta có OD=OB

Nên tam giác OBD cân tại O

Suy ra OD song song OB

c, Tính diện tích phần tam giác ABC nằm  ngoài đường tròn O

Ta có:ABC=60 độ

Xin lỗi tới đây tớ ko biết làm

a: góc ADB=góc AHB=90 độ

=>ADHB nội tiếp

b: góc EAD=90 độ-góc BAD=góc ABE

=>góc EAD=góc HBE

23 tháng 10 2016

B C H K A M O M'

a/ Dễ dàng chứng minh được OA chính là đường trung bình của hình thang HBCK, suy ra A là trung điểm HK => A chính là tâm của đường tròn đường kính HK.

Để chứng minh đường tròn đường kính HK tiếp xúc với BC, ta sẽ chứng minh BC chính là tiếp tuyến của đường tròn (A) tại M hay AM = AK.

Vì HK là tiếp tuyến của (O) tại A nên : \(\widehat{CAK}=\frac{1}{2}\text{sđcungAC}=\widehat{ABC}\left(1\right)\)

Mặt khác, tam giác BAC vuông tại A vì cạnh huyền BC là đường kính của đường tròn (O) . Ta dễ dàng suy ra \(\widehat{ABC}=\widehat{CAM}\left(2\right)\)

Từ (1) và (2) ta có \(\widehat{CAK}=\widehat{CAM}\)

Xét hai tam giác vuông CAM và tam giác vuông CAK có CA là cạnh chung , góc CAM = góc CAK nên \(\Delta CAK=\Delta CAM\left(ch.gn\right)\Rightarrow AK=AM\)

Từ đó suy ra đpcm.

b/ Vì BHKC là hình thang nên \(S_{BHKC}=\frac{\left(BH+CK\right).HK}{2}=OA.HK\)

Từ câu a) ta chứng minh được \(AK=AM\) nên \(HK=2AK=2AM\le2OA\) (hằng số)

=>\(S_{BHKC}\le OA.2OA=2OA^2=2\left(\frac{BC}{2}\right)^2=\frac{BC^2}{2}\) . Dấu "=" xảy ra khi A là điểm chính giữa cung BC.

Vậy ...............................

c/ Đề sai , bởi vì góc MAO có đơn vị độ, còn vế bên phải lại là một tỉ số .

 

 

23 tháng 10 2016

@Hoàng Lê Bảo Ngọc

bn xem có phải k sao cô minh cho đề thế nhỉ