\(AA^,;BB^,;CC^,\)đồng quy tại H.Chứng minh rằng:
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Có : AH/AA' = AH.(BA'+CA')/AA'.(BA'+CA') = 2S AHB + 2S AHC/2S ABC = S AHB + S AHC/S ABC

Tương tự : BH/BB' = S AHB + S BHC/S ABC

CH/CC' = S AHC + S CHB / S ABC

=> AH/AA' + BH/BB' + CH/CC' = 2.(S AHB + S AHC + S BHC/S ABC) = 2.1 = 2

=> ĐPCM

k mk nha

17 tháng 12 2019

Tự kẻ hình nhé e

Ns chung bài này khá dể :

Ta thấy \(\frac{AH}{AA'}=\frac{Sahc}{Saa'c}=\frac{Sahb}{Saa'b}=\frac{Sahc+Sahb}{Saa'c+Saa'b}=\frac{Sahc+Sahb}{Sabc}.\)

(Chố dấu = thứ 3 là tính chất dãy tỉ số = nhau nhé ko nhớ xem lại lớp 7)

Tương tự  \(\frac{BH}{BB'}=\frac{Sahb+Sbhc}{Sabc}.\)và \(\frac{CH}{CC'}=\frac{Sahc+Sbhc}{Sabc}.\)

Xong cộng lại \(\frac{AH}{AA'}+\frac{BH}{BB'}+\frac{CH}{CC'}=\frac{2.\left(Sahb+Sbhc+Sahc\right)}{Sabc}\)=2

15 tháng 2 2017

Cho tam giác ABC vuông tại A biết AB=6,BC=10.đường cao AH .Gọi ED lần lượt là chân đường vuông góc kẻ từ H đến AC và AB 

a)Tính diện tích tam giác ABC

b)CM:AH=DE

c)kẻ chung tuyến AM của tam giác ABC .CM:AM vuông góc với DE

Gíup mình với mình.Mình đang rất cần

18 tháng 3 2020

Câu c) Các bạn tự vẽ hình nhé mình chỉ giải thôi:

Kẻ tia Cx vuông góc với CC'. Vẽ D là điểm đối xứng với A qua Cx. AD giao Cx tại I.

C/m C'AIC là hcn=> Góc BAD = 90 độ

=> CC'= AI

Có: D đối xứng với D qua Cx, I là giao điểm của AD và Cx

=> I là trung điểm của AD=> 2AI=AD

=> 2CC'=AD.

=> AB2+ AD2= BD2( Đlí PTG)

Ta có: Với 3 điểm B,C,D thì sẽ luôn có:  (BD+CD)2>= BD2

Có: AB2+ AD2=BD2

=> (BD+CD)2>= AB2+ AD2

=>  (BD+CD)2>= AB2+ (2CC')2

=> (BD+CD)2>= AB2+ 4CC'

=>  (BD+CD)2- AB2>= 4CC'(1)

CMTT=> (AB+AC)2-BC2>= 4AA'(2)

            và (AB+BC)2- AC2>= 4BB'(3)

Từ (1),(2) và (3) ta chứng minh đc:

(AB+BC+AC)2>= 4(AA'2+BB'2+CC'2)

=> GTNN bằng 4 <=> BC=AC; AC=AB; AB=BC<=> AB=BC=AC

=> GTNN là 4 khi tam giác ABC đều.

6 tháng 10 2019

A B C F E H

\(\Delta ABH\) và \(\Delta ABD\) có chung đường cao kẻ từ \(B\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}\) (1)

\(\Delta AHC\) và \(\Delta ADC\) có chung đường cao kẻ từ \(C\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{AHC}}{S_{ADC}}\) (2)

Từ (1) và (2) suy ra 

\(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}=\frac{S_{AHC}}{S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\) 

( Áp dụng tính chất của dãy tỉ số bằng nhau )

CMTT \(\frac{BH}{BE}=\frac{S_{ABH}+S_{BCH}}{S_{ABC}}\)

\(\frac{CH}{CF}=\frac{S_{ACH}+S_{BCH}}{S_{ABC}}\)

Cộng vế với vế của các bất đẳng thức trên ta được :

\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=\frac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\frac{2S_{ABC}}{S_{ABC}}=2\left(đpcm\right)\)

Chúc bạn học tốt !!!

3 tháng 5 2020

a, XÉt Δ AEF và ΔABC

AE/AF=ABAC⇒AE/AB=AF/AC

góc BACchung

=> Δ AEF ∼ ΔABC (đpcm)

b, mk ko hiểu