\(\frac{AH...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2019

A B C F E H

\(\Delta ABH\) và \(\Delta ABD\) có chung đường cao kẻ từ \(B\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}\) (1)

\(\Delta AHC\) và \(\Delta ADC\) có chung đường cao kẻ từ \(C\rightarrow AD\) nên \(\frac{AH}{AD}=\frac{S_{AHC}}{S_{ADC}}\) (2)

Từ (1) và (2) suy ra 

\(\frac{AH}{AD}=\frac{S_{ABH}}{S_{ABD}}=\frac{S_{AHC}}{S_{ADC}}=\frac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\frac{S_{ABH}+S_{ACH}}{S_{ABC}}\) 

( Áp dụng tính chất của dãy tỉ số bằng nhau )

CMTT \(\frac{BH}{BE}=\frac{S_{ABH}+S_{BCH}}{S_{ABC}}\)

\(\frac{CH}{CF}=\frac{S_{ACH}+S_{BCH}}{S_{ABC}}\)

Cộng vế với vế của các bất đẳng thức trên ta được :

\(\frac{AH}{AD}+\frac{BH}{BE}+\frac{CH}{CF}=\frac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\frac{2S_{ABC}}{S_{ABC}}=2\left(đpcm\right)\)

Chúc bạn học tốt !!!

3 tháng 5 2020

a, XÉt Δ AEF và ΔABC

AE/AF=ABAC⇒AE/AB=AF/AC

góc BACchung

=> Δ AEF ∼ ΔABC (đpcm)

b, mk ko hiểu

26 tháng 12 2017

A B C D E F H

\(\Delta ABH\)\(\Delta ABD\) có chung đường cao kẻ từ B -> AD nên \(\dfrac{AH}{AD}=\dfrac{S_{ABH}}{S_{ABD}}\) (1)

\(\Delta AHC\)\(\Delta ADC\) có chung đường cao kẻ từ C -> AD nên \(\dfrac{AH}{AD}=\dfrac{S_{AHC}}{S_{ADC}}\) (2)

Từ (1) và (2) suy ra \(\dfrac{AH}{AD}=\dfrac{S_{ABH}}{S_{ABD}}=\dfrac{S_{AHC}}{S_{ADC}}=\dfrac{S_{ABH}+S_{AHC}}{S_{ABD}+S_{ADC}}=\dfrac{S_{ABH}+S_{ACH}}{S_{ABC}}\)(áp dụng tính chất của dãy tỉ số = nhau)

CMTT: \(\dfrac{BH}{BE}=\dfrac{S_{ABH}+S_{BCH}}{S_{ABC}}\)

\(\dfrac{CH}{CF}=\dfrac{S_{ACH}+S_{BCH}}{S_{ABC}}\)

Cộng vế với vế của các đẳng thức trên ta được :

\(\dfrac{AH}{AD}+\dfrac{BH}{BE}+\dfrac{CH}{CF}=\dfrac{2\left(S_{ABH}+S_{ACH}+S_{BCH}\right)}{S_{ABC}}=\dfrac{2S_{ABC}}{S_{ABC}}=2\)

(đpcm)

3 tháng 2 2017

k minh minh giai

3 tháng 2 2017

giúp mik vs 

hứa sẽ k nếu đúng và đầy đủ 

1 tháng 5 2021

Kết quả hình ảnh cho Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).a) chứng minhHD/AD

Đây nhé