Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu c nè: mik ns ý chính nhé
h bạn kẻ tiếp tuyến tại A
chứng minh đc AO vuông góc vs MN
=> OA vuông góc vs EF
do OA cố định
=> đường thẳng qua A vuông góc vs EF luôn đi qua 1 điểm cố định
do câu a va b bn làm đc rồi nên mik nghĩ bn cx hok giỏi rồi nên mik làm tắt nha
a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)
Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)
b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.
c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)
Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp
Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)
1) Xét tứ giác BCEF có
\(\widehat{BEC}=\widehat{BFC}\left(=90^0\right)\)
mà hai góc này cùng nhìn cạnh BC dưới những góc bằng nhau
nên BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
2) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AC=AF\cdot AB\)(Đpcm)
a, Ta co 2 bo de quen thuoc sau : FC la phan giac ^EFD, FB la phan giac PFD
ma QR//EP nen
\(\widehat{PFB}=\widehat{FQD}=\widehat{QFD}\Rightarrow\Delta DFQ\) can tai D => DF=DQ (1)
mat khac theo tinh chat tia phan giac ngoai ^PFD co \(\frac{FD}{FP}=\frac{CD}{CP}\)
ma \(\frac{CD}{CP}=\frac{DT}{PF}\) (DT//PF)
suy ra \(\frac{DF}{PF}=\frac{DT}{PF}\Rightarrow DT=DF\) (2)
Tu(1)va (2) suy ra DT=DQ hay D la trung diem QT
b, Goi S la trung diem BC ta chung minh PQSR noi tiep
Co \(\Delta PSE~\Delta ESD\left(G-G\right)\Rightarrow\frac{PS}{ES}=\frac{ES}{SD}\Leftrightarrow ES^2=PS.DS\)
lai co ES=SB=SC do S la trung diem canh huyen BC cua tam giac vuong BEC
suy ra \(BS^2=PS.SD=DS\left(PD+DS\right)=SD^2+PD.DS\)
=> \(PD.DS=BS^2-SD^2=\left(BS-DS\right)\left(BS+DS\right)=BD.DC\) (3)
Mat khac ^DQB=^PFB(cmt)
^PFB=^RCD( BFEC nt)
suy ra ^DQB=^RCD=> BQCR noi tiep
=> \(BD.DC=DQ.DR\) (4)
Tu (3),(4) suy ra DP.DS=DQ.DR => PQDR noi tiep
=> (PQR) di qua S la trung diem BC co dinh
c,lay H' doi xung voi H qua BC, ta co H' thuoc (O) .
ta lai co bo de sau : \(BD.DC=DH.DA\) (quen thuoc)
suy ra \(DP.DS=DH.DA\left(=DB.DC\right)\)
<=> \(\frac{DH}{DP}=\frac{DS}{DA}\)
ma ^HDP=^SDA=90
suy ra \(\Delta DHP~\Delta DSA\left(c-g-c\right)\Rightarrow\widehat{DHP}=\widehat{DSA}\)
va \(\widehat{DSA}=\widehat{AHK}\left(phu\widehat{DAS}\right)\)
=>\(\widehat{DHP}=\widehat{AHK}\) => P,H,K thang hang
lai co \(\widehat{AFH}=\widehat{AKH}=\widehat{AEH}=90\)
=> A,F,H,K,E cung thuoc 1 duong tron =. FHKE noi tiep
=>\(PF.PE=PH.PK\) (5)
ma BFEC noi tiep => \(PF.PE=PB.PC\) (6)
(5)+(6)Suy ra \(PH.PK=PB.PC\) => BHKC noi tiep
Vi H' ,I doi xung voi H,K qua BC ma BHKC noi tiep => BH'IC noi tiep
do vay \(I\in\left(BH'C\right)=\left(ABH'C\right)=\left(O\right)\)
e,Goi tam (CJL) la U, (U) cat (O) tai V, BC giao OG tai X
=> \(\widehat{VBG}=\widehat{VJG}\left(=\widehat{VCB}\right)\) =>BJVG noi tiep
=> B,J,X,V,G cung thuoc 1 duong tron => ^BVG=^BXG=90
lai co ^XVG +^XBG=180 hay ^XVG+^BAC=180
va ^BVC+^BAC=180
suy ra ^XVG=^BVC
hay 90 +^XVB=^XVB+^XVC
=> ^XVC=90
=> V thuoc duong tron dk XC
mat khac V cung thuoc (O)
suy ra V co dinh ,C co dinh
suy ra tam U di chuyen tren trung truc VC co dinh (dpcm)
a) Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\)
=> AEHF là tứ giác nt
b) Xét tứ giác BCEF có 2 góc \(\widehat{BFC}\)và \(\widehat{CEB}\)cùng nhìn đoạn BC một góc 90o
=> BCEF là tứ giác nt
=> \(\widehat{KBF}=\widehat{KEC}\)(cùng bù với \(\widehat{FBC}\))
Xét \(\Delta KBF\)và \(\Delta KEC\)có
\(\widehat{KBF}=\widehat{KEC}\)
\(\widehat{CKE}\)chung
=> \(\Delta KBF\)ᔕ \(\Delta KEC\)(g-g)
=> \(\frac{KB}{KE}=\frac{KF}{KC}\)
=> KB . KC = KE . KF (1)
c) Nối M với B
Xét (O) có tứ giác AMBC nội tiếp đường tròn đó
=> \(\widehat{KBM}=\widehat{KAB}\)
Xét \(\Delta KBM\)và \(\Delta KAC\)có
\(\widehat{KBM}=\widehat{KAC}\)
\(\widehat{AKC}\)chung
=> \(\Delta KBM\)ᔕ \(\Delta KAC\)(g.g)
=> \(\frac{KB}{KA}=\frac{KM}{KC}\)=> KB . KC = KA . KM (2)
Từ (1) (2) => KE . KF = KA . KM
=> \(\frac{KF}{KA}=\frac{KM}{KE}\)
Xét \(\Delta KFMvà\Delta KAE\)có
\(\widehat{AFE}\)chung
\(\frac{KF}{KA}=\frac{KM}{KE}\)
=> \(\Delta KFM\)ᔕ \(\Delta KAE\)(g-g) <=> \(\widehat{KMF}=\widehat{KEA}\)hay \(\widehat{KMF}=\widehat{FEA}\)
Xét tứ giác AMFE có \(\widehat{KMF}=\widehat{FEA}\)=> AMFE là tứ giác nội tiếp
=> A, M, F ,E cùng thuộc một đường tròn
Mà A, F, H,E cùng thuộc một đường tròn (AFHE là tgnt)
=> A,F,M,H,E cùng thuộc một đường tròn
=> AMHE là tứ giác nt
=> \(\widehat{AMH}+\widehat{AEH}=180^o\)=> \(\widehat{AMH}=180^o-\widehat{AEH}=180^o-90^o=90^o\)
=> \(MH\perp AK\)
PHẦN D NGHĨ SAU NHÉ
d) À mik có ghi thiếu. Câu d c/m: MH cố định khi A di chuyển trên cung lớn BC