Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu c nè: mik ns ý chính nhé
h bạn kẻ tiếp tuyến tại A
chứng minh đc AO vuông góc vs MN
=> OA vuông góc vs EF
do OA cố định
=> đường thẳng qua A vuông góc vs EF luôn đi qua 1 điểm cố định
do câu a va b bn làm đc rồi nên mik nghĩ bn cx hok giỏi rồi nên mik làm tắt nha
a) Xét tam giác ABC có
BE là đường cao của AC tại E => góc BEA = góc BEC =90
CF là đường cao của AB tại F => góc CFA = góc CFB =90
AD là đường cao của BC tại D => góc ADB = góc ADC
xét tứ giác BFEC có
góc BFC = góc BEC = 90
mà F và E là 2 đỉnh đối => tứ giác nội tiếp (DHNB)
=> góc EFC = góc EBC (2 góc nội tiếp chắn EC)
=> góc FEH = góc HCB ( 2 góc nội tiếp chắn BF)
Xét (O) có
góc MNC = góc EBC (2 góc nội tiếp chắn MC )
=>góc EFC = góc MNC
mà 2 góc ở vị trí đồng vị => song song (tc)
b) Xét tứ giác BFHD có
góc BDA + góc CFB =180
mà F và D là 2 đỉnh kề
=> BFHD là tứ giác nội tiếp (DHNB)
=> góc CFD= góc EBC (góc nội tiếp chắn HD)
=> Góc EFC = góc CFD (= góc EBC)
=> FC là phân giác của góc DFE
=> FH là phân giác của góc DFE (H thuộc DC)
=Xét tứ giác CDHE có
góc ADC + góc CEB =180
mà D và E là 2 đỉnh kề
=> tứ giác CDHE nội tiếp
=> góc HCB = góc HED(2 góc nội tiếp chắn HD)
=> góc FEH = góc HEB (= góc HCD)
=> HE là phan giác góc FED
xét tma giác FED có
FH là phân giác góc EFD
EH lag phân giác góc FED
mà FH giao với EH tại H
=> H là giao điểm 3 đường phân giác của tam giác EFD
=> H là tâm đường tròn nội tiếp tam giác EFD
c) gọi giao điểm của đường vuông góc kẻ từ A -> EF cắt EF tại K và cắt BE tại T và cắt (O) tại I
vì TK vuông góc với EF tại K
=> góc TKE = 90
xét tam giác TKE và tam giác TEA có
góc T chung
góc TKE = góc TEA (=90)
=> đồng dạng(g-g) => góc TEK = góc TAE
Xét tứ giác nội tiếp BFEC có
Góc TEK = góc FCB ( 2 góc nội tiếp chắn BF;T thuộc BE)
Xét (O) có
Góc TAE = góc CBI ( 2 góc nội tiếp chắn IC)
=> góc FCB = góc IBC
mà 2 góc ở vị trí so le trong => BI // CF (tc)
mà CF vuông góc với AB
=> IB vuông góc với AB
=> góc IBA=90 (tc)
xét (O)
=> góc IBA=1/2 số đo cung AI (góc nội tiếp chắn AI)=> số đo cũng AI = 180
=> AI là đường kính của đường tròn tâm (O)
=> A,I,O thẳng hàng
mà AI vuông góc với EF => đường vuông góc với EF sẽ luông đi qua điểm O
mà O cố định => đường vuông góc với EF sẽ luông đi qua điểm O cố định
a, Xét tứ giác BEHF có: góc BFH + góc BEH = 900 + 900 = 1800
=> Tứ giác BEHF nội tiếp.
b, Xét tứ giác AFEC có :
góc AFC = góc AEC ( = 900) (Hai góc cùng nhìn 1 cạnh dưới 1 góc vuông)
=> Tứ giác AFEC nội tiếp
Xét tứ giác AFHE có:
Góc HEA + Góc HFA = 90 độ + 90 độ = 180 độ.
Mà 2 góc này ở vị trí đối nhau.
=> Tứ giác AFHE nội tiếp đường tròn (dhnb).
a) Ta thấy \(\widehat{AMN}=\widehat{ABH}+\frac{1}{2}\widehat{BHQ}=\widehat{ACH}+\frac{1}{2}\widehat{CHP}=\widehat{ANM}\). Suy ra \(\Delta AMN\) cân tại A.
b) Dễ thấy tứ giác BEFC và BQPC nội tiếp, suy ra \(\widehat{HEF}=\widehat{HCB}=\widehat{HPQ}\), suy ra EF || PQ
Hiển nhiên \(OA\perp PQ\). Do đó \(OA\perp EF.\)
c) Gọi MK cắt BH tại I, NK cắt CH tại J, HK cắt BC tại S.
Vì A,K là trung điểm hai cung MN của (AMN) nên AK là đường kính của (AMN)
Suy ra \(MK\perp AB,NK\perp AC\)hay MK || CH, NK || BH
Ta có \(\Delta BHQ~\Delta CHP\), theo định lí đường phân giác và Thales thì:
\(\frac{IH}{IB}=\frac{MQ}{MB}=\frac{NP}{NC}=\frac{JH}{JC}\). Suy ra IJ || BC
Cũng từ MK || CH, NK || BH suy ra HIKJ là hình bình hành hay HK chia đôi IJ
Do vậy HK chia đôi BC theo bổ đề hình thang. Vậy HK đi qua S cố định.
a) Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
Do đó: BCEF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Ta có: BCEF là tứ giác nội tiếp(cmt)
nên \(\widehat{EBC}=\widehat{EFC}\)(hai góc cùng nhìn cạnh EC)
hay \(\widehat{MBC}=\widehat{HFE}\)(1)
Xét (O) có
\(\widehat{MBC}\) là góc nội tiếp chắn cung CM
\(\widehat{MNC}\) là góc nội tiếp chắn cung CM
Do đó: \(\widehat{MBC}=\widehat{MNC}\)(Hệ quả góc nội tiếp)
hay \(\widehat{MBC}=\widehat{HNM}\)(2)
Từ (1) và (2) suy ra \(\widehat{HFE}=\widehat{HNM}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên FE//MN(Dấu hiệu nhận biết hai đường thẳng song song)