K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

a)Xét tam giác BDH và tam giác BEC có: góc B chung ; góc BDH = góc BEC = 90

=> tam giác BDH đồng dạng với tam giác BEC (g-g)

=> BD/BE = BH/BC => BD/BH = BE/BC

Xét tam giác BED và tam giác BCH có: góc B chung; BD/BH = BE/BC (cmt)

=> tam giác BED đồng dạng với tam giác BCH (c-g-c)

b)Xét tam giác BFH và tam giác CEH có: BFH = CEH = 90; BHF = CHE (đối đỉnh)

=> tam giác BFH đồng dạng với tam giác CEH (g-g)

=> FH/EH = BH/CH => FH/BH = EH/CH

Xét tam giác FEH và tam giác BCH có: FHE = BHC (đối đỉnh); FH/BH = EH/CH (cmt)

=> tam giác FEH đồng dạng với tam giác BCH (c-g-c)

=> FEH = BCH hay MEH = BCH(1)

VÌ tam giác BED đồng dạng với tam giác BCH (cmt) => BED = BCH hay HEN = BCH(2)

 Từ (1),(2)=> MEH = HEN

Xét tam giác MHE và tam giác NHE có: HME = HNE =90; HE chung ; MEH = NEH(cmt)

=> tam giác MHE bằng tam giác NHE (ch-gn)

=> HM = HN(2 cạnh tương ứng)

còn câu c) mình chưa làm được, bạn làm được chưa ? làm giùm  mình với

6 tháng 1 2018

Vì FI vuông góc với AC, BE vuông góc với AC nên FI song song với EQ

suy ra\(\frac{AI}{IE}=\frac{AF}{FB}\)(1)

Vì FJ vuông góc với AD, BC vuông góc với AD nên JI song song với BC

suy ra \(\frac{AF}{FB}=\frac{AJ}{JD}\)(2)

Từ (1) và (2) suy ra \(\frac{AI}{IE}=\frac{AJ}{JD}\)suy ra IJ song song với ED  (a)

VÌ IF vuông góc với AC, FQ vuông góc với AC nên IF song song với FQ

suy ra\(\frac{IE}{EC}=\frac{FH}{HC}\) (3)

VÌ FK vuông góc với BC,AD vuông góc với BC nên FK song song với AD

suy ra \(\frac{KD}{KC}=\frac{KH}{HC}\)(4)

Từ (3) và (4) suy ra \(\frac{IE}{EC}=\frac{KD}{KC}\)suy ra IK song song với ED  (b)

Vì FK song song với AD(cmt) nên\(\frac{AF}{FB}=\frac{KD}{BK}\)(5)

Vì FQ vuông góc với EB,AC  vuông góc với EB nên FQ song song với EI

suy ra \(\frac{AF}{FB}=\frac{QE}{BQ}\)(6)

Từ (5) và (6) suy ra \(\frac{BQ}{QE}=\frac{BK}{KD}\) suy ra QK song song với ED  (c)

Từ (a), (b) và (c) suy ra I,J,Q,K thẳng hàng 

6 tháng 1 2018

làm tắt đó nha Huyền Trang (Lì)

2 tháng 4 2020

a) Xét \(\Delta EBC\)có \(\hept{\begin{cases}BE\perp AC\\DM\perp AC\end{cases}\Rightarrow}\)DM//EB => \(\frac{MC}{CE}=\frac{CD}{CB}\left(1\right)\)

Xét \(\Delta\)CFB có: \(\hept{\begin{cases}ND\perp FC\\BF\perp FC\end{cases}\Rightarrow}\)ND//BF => \(\frac{NC}{FC}=\frac{CD}{CB}\left(2\right)\)

Từ (1)(2) => \(\frac{MC}{CE}=\frac{NC}{FC}\Rightarrow MC\cdot FC=CE\cdot NC\left(đpcm\right)\)

b) Xét tam giác FBC có:\(\hept{\begin{cases}QD\perp FB\\FC\perp FB\end{cases}\Rightarrow}\)QD//FC => \(\frac{QF}{FB}=\frac{DC}{BD}\)

mà \(\frac{DC}{BD}=\frac{MC}{CE}=\frac{NC}{FC}\Rightarrow\frac{QF}{FB}=\frac{MC}{CE}=\frac{NC}{FC}\)hay \(\frac{QF}{FB}=\frac{NC}{CF}=\frac{MC}{CE}\)

=> Q,N,M thẳng hàng mà \(\frac{NC}{CF}=\frac{MC}{CE}\)=> MN//EF => QM//EF (đpcm)

c) Xét tam giác BEC có \(\hept{\begin{cases}PD\perp BE\\CE\perp BE\end{cases}}\)=> PD//EC => \(\frac{PE}{EB}=\frac{DC}{BC}\)

mà \(\frac{DC}{CB}=\frac{NK}{CF}=\frac{MC}{CE}=\frac{QF}{FB}\)

=> M,N,Q thẳng hàng (đpcm)

a: HC vuông góc AI

IH vuông góc HM

=>góc AIH=góc MHC(1)

góc IAH=90 độ-góc ABD

góc HCM=90 độ-góc FBC

=>góc IAH=góc HCM(2)

Từ (1), (2) suy ra ΔAHI đồng dạng với ΔCMH

b: Kẻ CG//IK(G thuộc AB), CG cắt AD tại N

=>HM vuông góc CN

=>M là trựctâm của ΔHCN

=>NM vuông góc CH

=>NM//AB

=>NM//BG

=>N là trung điểm của CG

IK//GC

=>IH/GN=HK/NC

mà GN=NC

nên IH=HK

=>H là trung điểm của IK

NM
13 tháng 11 2020

"trên tia đối của tia EH lấy điểm P ..." bài này có sai đề không nhỉ, không thể tồn tại hai điểm P, Q thì làm sao vẽ hình được e

31 tháng 10 2021

sai thế nào đc

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0
30 tháng 4 2019

a, Xét tgABE và tgACF có:

góc AEB = góc CFA = 90o 

góc BAC chung

Từ 2 điều trên => tgABE đồng dạng tgACF (g.g)

=> AB/AC = AE/AF (các cặp cạnh tương ứng)

=> AB.AF = AC.AE

30 tháng 4 2019

xét tam giác ABE và tam giác ACF có : 

góc AEB = góc AFC = 90 do ...

góc CAB chung

=> tam giác ABE ~ tam giác ACF (g.g)

=> AB/AC = AE/AF

=> AB.AF = AC.AE