Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét tam giác AIM và tam giác EKM có
AI=EK ( gt)
AM=EM (gt)
góc MEK= góc IAM ( vì AC// BE, hai góc này ở vị trí soletrong)
=> tam giác AIM= tam giác EKM
=>IM=KM ( cặp cạnh tương ứng) hay IM+KM=IK. do đó I;K;M thẳng hàng
c) Xét tam giác vuông HBE ta có:
góc HEB= 900- góc HBE= 90-50=400
ta lại có góc HEB= góc MEB + góc HEM=> góc HEM= góc HEB- góc MEB= 40-25=150
Góc BME= góc MHE+ góc HEM ( vì góc BME là góc ngoài của tam giác MHE)
góc BME= 90+15=1050
a)XÉT TAM GIÁC AMC VÀ TAM GIÁC EMB :
AM=ME(GT)
GÓC BME= GÓC AMC(2 GÓC ĐỐI ĐỈNH)
BM=MC(M LÀ TRUNG ĐIỂM CỦA BC)
=>TAM GIÁC AMC=TAM GIÁC EMB(C.G.C)
VẬY ...........
b)THEO a,TAM GIÁC AMC=TAM GIÁC EMB
=>GÓC MAC=GÓC BEM(2 GÓC TƯƠNG ỨNG)
MÀ GÓC MAC VÀ GÓC BEM NẰM Ở VỊ TRÍ SO LE TRONG
=>AB//CE
VẬY AB//CE
c)TAM GIÁC AMC=TAM GIÁC EMB(CÂU a)
=>GÓC IAM=GÓC MEK(2 GÓC TƯ)
XÉT TAMGIACS AMI VÀ TAM GIÁC EMK CÓ:
MA=ME(GT)
GÓC MAI=GÓC MEK(CHỨNG MINH TRÊN)
AI=KE(GT)
=>TAM GIÁC AMI=TAM GIÁC EMK(C.G.C)=>GÓC AMI=GÓC KME(2 GÓC TƯ)
MÀ:GÓC KME + GÓC KMA=GÓC AME=180o=>GÓC AMI + GÓC KMA =280o
=>GÓC KMI =180o
VẬY ............
hình bạn tự vẽ nha
a)xét tam giác AMC và tam giác EMB có
AM=EM(giả thiết)
góc AMC=góc EMB(đối đỉnh)
AM=MB(giả thiết)
=>tam giác AMC= tam giác EMB(c.g.c)
=>AC=EB(2 cạnh tương ứng) và góc CAM = góc BEM(2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=>AC // BE
\(a)\)Xét \(\Delta AMC\)và \(\Delta BME\)có:
\(MB=MC\)(VÌ M là trung điểm cua BC)
\(\widehat{AMC}=\widehat{BME}\)(vì đối đỉnh)
\(MA=ME\)(gt)
\(\Rightarrow\Delta AMC=\Delta BME\)(c.g.c)
\(\Rightarrow AC=EB\)(2 cạnh tương ứng)
và\(\widehat{CAM}=\widehat{BEM}\)(2 góc tương ứng)
Mà chúng lại ở vị trí so le trong
\(\Rightarrow AC//EB\)
\(b)\)Vì \(AC=EB\)(theo phàn a)
Mà \(AC//BE\)(theo phần a)
và\(K\in AC;I\in EB\)sao cho \(AI=KE\)
\(\Rightarrow I;K\)thẳng hàng
phần c sẽ suy ngjix sau nhé
Vì AC//BE
=>tg AIM=tgEKM vì:
^AMI=^EMK (đ đ)
AI=EK
^IAM=^MEK(so le)
A B C M I K E
Xét tam giác AMC và tam giác EMB có:
MA = ME (gt)
MB = MC (gt)
\(\widehat{AMC}=\widehat{EMB}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMC=\Delta EMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{IAM}=\widehat{KEM}\) (Hai góc tương ứng)
Xét tam giác AIM và tam giác EKM có :
MA = ME
AI = EK
\(\widehat{IAM}=\widehat{KEM}\)
\(\Rightarrow\Delta AIM=\Delta EKM\left(c-g-c\right)\)
\(\Rightarrow\widehat{AMI}=\widehat{EMK}\) (Hai góc tương ứng)
\(\Rightarrow\widehat{AMI}+\widehat{AMK}=\widehat{EMK}+\widehat{AMK}=\widehat{AME}=180^o\)
Vậy nên I, M ,K thẳng hàng.