K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 6

H là điểm như thế nào vậy bạn?

22 tháng 11 2023

loading...  loading...  

30 tháng 10 2021

a, Vì \(BC^2=400=256+144=AC^2+AB^2\) nên tam giác ABC vuông tại A

b, Áp dụng HTL: \(AM=\dfrac{AB\cdot AC}{BC}=9,6\left(cm\right)\)

\(BM=\dfrac{AB^2}{BC}=7,2 \left(cm\right)\)

c, Áp dụng HTL: \(AE\cdot AB=AM^2\)

Áp dụng PTG: \(AM^2=AC^2-MC^2\)

Vậy \(AE\cdot AB=AC^2-MC^2\)

d, Áp dụng HTL: \(AE\cdot AB=MB\cdot MC=AM^2\)

\(\left\{{}\begin{matrix}\widehat{EAM}=\widehat{ACM}\left(cùng.phụ.\widehat{MAC}\right)\\\widehat{AEM}=\widehat{AMC}=90^0\end{matrix}\right.\Rightarrow\Delta AEM\sim\Delta CMA\left(g.g\right)\\ \Rightarrow EM\cdot AC=AM^2\)

Vậy ta được đpcm

31 tháng 10 2021

 

 

13 tháng 7 2019

a, HS tự chứng minh

b, HS tự chứng minh

c, Chứng minh được:  B A M ^ = M B C ^

Từ đó chứng minh được:

∆MAB:∆MBD =>  M B 2 = M A . M D

a: Gọi O là trung điểm của MC

=>O là tâm đường tròn đường kính MC

Xét (O) có

ΔCNM nội tiếp

CM là đường kính

Do đó: ΔCNM vuông tại N

=>MN\(\perp\)NC tại N

=>MN\(\perp\)CB tại N

Xét tứ giác ABNM có \(\widehat{MNB}+\widehat{MAB}=90^0+90^0=180^0\)

nên ABNM là tứ giác nội tiếp

=>A,B,N,M cùng thuộc một đường tròn

b: ABNM là tứ giác nội tiếp

=>\(\widehat{ANM}=\widehat{ABM}\)

=>\(\widehat{ANM}=\widehat{ABI}\)(1)

Xét tứ giác CIAB có \(\widehat{CIB}=\widehat{CAB}=90^0\)

nên CIAB là tứ giác nội tiếp

=>\(\widehat{ABI}=\widehat{ACI}\)

mà \(\widehat{ACI}=\widehat{MCI}=\widehat{MNI}\left(=\dfrac{1}{2}sđ\stackrel\frown{MI}\right)\)

nên \(\widehat{ABI}=\widehat{MNI}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{MNI}=\widehat{MNA}\)

=>NM là phân giác của góc ANI