Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khuya rồi gửi đề dài ntn ai làm bn.....
...hỏi từng câu thôi
với lại đề copy đúng ko?(nhiều như vậy mà)
mai hỏi nha....mk ko muốn ngủ nhưng nhác trả lời^^
1. Cho tam giác ABC, D là điểm chính giữa cạnh BC, E là điểm chính giữa cạnh AC. Hai đoạn thẳng AD và BE cắt nhau tại I. Hãy so sánh diện tích tam giác AIE và BID.
CHỨNG MINH:
E là điểm giữa của AC
D là điểm giữa BC
=> ED là đường trung bình của tg ABC => ED // AB => khoảng cách từ E đến AB = khoảng cách từ D đến AB
Xét hai tg ABE và tg ABD có chung cạnh đáy AB; đường cao bằng nhau => SABE = SABD
Hai tgiác trên có phần diện tích chung là SAIB nên phần diện tích còn lại = nhau
=> SAIE = SBID
2. Cho tam giác ABC,đường cao AH = 48cm, BC = 100cm. Trên cạnh AB lấy các điểm E và D sao cho AE = ED = DB, trên cạnh AB lấy các điểm M và N sao cho AM = ED = DB, trên cạnh AC lấy các điểm M và N sao cho AM=MN=NC. Tính:
a) Diện tích tam giác ABC.
b) Diện tích tam giác BNC và tam giác BNA
c) Diện tích tam giác DEMN.
CHỨNG MINH:
a) Diện tích tg ABC là:
48 x 100 x 1/2 = 2400 (cm2)
b) Diện tích tg BNC = 1/3 diện tích tg ABC vì:
- Chung chiều cao hạ từ đỉnh B xuống AC
- Đáy NC = 1/3 AC
Diện tích tg BNC là:
2400 : 1/3 = 800 (cm2)
Diện tích tg BNA là:
2400 - 800 = 1600 (cm2)
c) Diện tích tg ABN = 2/3 ABC vì:
- Chung chiều cao hạ từ B xuống AC
- Đáy AN = 2/3 AC
Diện tích tg AEN = 1/3 ABN vì:
- Chung chiều cao hạ từ N xuống AB
- Đáy AE = 1/3 AB
Diện tích tg ANE là:
1600 x 1/3 = 1600/3 (cm2)
Diện tích tg AEM = 1/2 AEN vì:
- Chung chiều cao hạ từ E xuống AN
- Đáy AM = 1/2 AN
Diện tích tg AEM là:
1600/3 x 1/2 = 800/3 (cm2)
Diện tích hthang DEMN là:
2400 - 800 - 800/3 = 4000/3 (cm2)
:))
bài 3 chệu :((
SABN = \(\dfrac{1}{4}\) SABC ⇒ SABN = 240 : 4 = 60 (cm2)
SAMN = \(\dfrac{1}{4}\) SABN ⇒ SAMN = 60 : 4 = 15 (cm2)
Do SABN = SACM = \(\dfrac{1}{4}\) SABC ⇒ SBIM = SCIN
\(S_{BMC_{ }_{ }}=\frac{BM.CA}{2}=\frac{20.60}{2}=600cm^2\)
Ta có MN là đường tb của tam giác ABC => MN//AC và MN.2 = AC
=> MN là đường cao của AB ,MN=30 cm
=> SABN=30.40:2=600cm2
b)SAMNC=(MN+AC) .AM:2=(30+60).20:2=900cm2
c)SMAC=MA.AC:2
SANC=CA.MA:2
=> SMAC=SANC=>SAMO=SCON
a) Ta thấy chiều cao hạ từ C xuống đường thẳng AD là CA. Vậy thì
\(S_{BMC}=\frac{1}{2}.MB.CA=\frac{1}{2}.\frac{AB}{2}.AC=\frac{40.60}{4}=600\left(cm^2\right)\)
Ta thấy chiều cao hạ từ A xuống BC là AH. Vậy thì \(\frac{S_{ANB}}{S_{ABC}}=\frac{\frac{1}{2}.BN.AH}{\frac{1}{2}.BC.AH}=\frac{1}{2}\)
\(S_{ABC}=\frac{1}{2}.40.60=1200\left(cm^2\right)\Rightarrow S_{ANB}=600\left(cm^2\right)\)
b) Ta thấy tam giác BMN và tam giác ANB có chung chiều cao. Vậy \(\frac{S_{BMN}}{S_{ANB}}=\frac{MB}{AB}=\frac{1}{2}\Rightarrow S_{BMN}=600:2=300\left(cm^2\right)\)
Từ đó ta có \(S_{AMNC}=S_{ABC}-S_{BMN}=1200-300=900\left(cm^2\right)\)
c) Ta thấy tam giác MNC và tam giác BMN có chung chiều cao và đáy bằng nhau. Vậy diện tích của chúng bằng nhau.
Tam giác MNA và BMN cũng có chung chiều cao, đáy bằng nhau, vậy diện tích của chúng cũng bằng nhau.
Từ đây suy ra \(S_{MNA}=S_{MNC}\Rightarrow S_{AMO}+S_{MON}=S_{CNO}+S_{MON}\Rightarrow S_{AMO}=S_{CNO}.\)
Cho hình thang ABCD có đáy CD = AB, hai đường chéo AC và BD cắt nhau tại I. Biết tổng diện tích 2 tam giác AID và BIC là 9,1 cm2. a) So sánh diện tích 2 tam giác AID và BIC.
b) Tính diện tích hình thang ABCD
a) Dễ thấy MN là đường trung bình của tam giác ABC nên MN // BC
=> Nếu kẻ đường cao MH và NK của hai tam giác BMC và BNC thì luôn có MH = NK
Mà hai tam giác này có chung cạnh đáy BC => diện tích tam giác MBC = diện tích tam giác NBC
b) Ta có : \(\begin{cases}\text{MC//BD}\\AM=MB\end{cases}\) => MC là đường trung bình của tam giác ABD
=> BD = 2MC
1: Xét ΔABC có
BN,CM là các đường trung tuyến
BN cắt CM tại D
Do đó: D là trọng tâm của ΔABC
=>\(BD=\dfrac{2}{3}BN;CD=\dfrac{2}{3}CM\)
BD=2/3BN
=>\(S_{ABD}=\dfrac{2}{3}\cdot S_{ABN}\left(1\right)\)
\(CD=\dfrac{2}{3}CM\)
=>\(S_{ADC}=\dfrac{2}{3}\cdot S_{AMC}\left(2\right)\)
Ta có: M là trung điểm của AB
=>\(S_{AMC}=\dfrac{1}{2}\cdot S_{ABC}\left(3\right)\)
Ta có: N là trung điểm của AC
=>\(S_{ABN}=\dfrac{1}{2}\cdot S_{ABC}\left(4\right)\)
Từ (1),(2),(3),(4) suy ra \(S_{ABN}=S_{ADC}\)
mà \(S_{MBN}=\dfrac{1}{2}\cdot S_{ANB}\)
và \(S_{MNC}=\dfrac{1}{2}\cdot S_{AMC}\)
nên \(S_{MBN}=S_{MNC}\)
=>\(S_{MBD}+S_{MDN}=S_{NDC}+S_{MDN}\)
=>\(S_{MBD}=S_{NDC}\)
2: \(S_{AMC}=\dfrac{1}{2}\cdot S_{ABC}=\dfrac{1}{2}\cdot30=15\left(cm^2\right)\)
=>\(S_{MNC}=\dfrac{1}{2}\cdot S_{AMC}=7,5\left(cm^2\right)\)
Vì CD=2/3CM
nên \(S_{CND}=\dfrac{2}{3}\cdot S_{CNM}=5\left(cm^2\right)\)