K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2020

Học đến tính chât tia phân giác chia thành tỷ lệ chưa

5 tháng 1 2020

\(\Delta ABC\)có: đường phân giác trong của C cắc cạnh AB tại D. Lấy điểm E trên tia CD sao cho \(\widehat{CBD}=\widehat{CEA}\)

Xét \(\Delta CBD\)và \(\Delta CEA\)có: 

\(\widehat{BCD}=\widehat{ACD}\)( đường phân giác trong của C cắc cạnh AB tại D )

\(\widehat{CBD}=\widehat{CEA}\)

\(\Rightarrow\Delta CBD\)đồng dạng với \(\Delta CEA\left(g.g\right)\)

\(\Rightarrow\frac{CD}{CA}=\frac{BC}{EC}\Leftrightarrow BC.AC=EC.CD\)

Mà \(EC=CD+DE\)

nên \(BC.AC=CD\left(CD+DE\right)\)

\(\Leftrightarrow BC.AC=CD^2+CD.DE\)

\(\Rightarrow CD^2< CA.CB\)

loading...  loading...  

23 tháng 5 2017

sadasdasd

17 tháng 3 2022

A B C H D E

a)Xét \(\Delta ABC\) và \(\Delta HAC\) có 

\(\widehat{C}\) chung

\(\widehat{BAC}=\widehat{AHC}\)

=> \(\Delta ABC\) \(\sim\)\(\Delta HAC\) (g-g)

b) Xét  \(\Delta ABC\) vuông tại A có : 

\(BC^2=AB^2+AC^2\)

\(BC^2=81+144\)

\(BC^2=225\)

BC=15 cm

 Xét  \(\Delta ABC\)  có : CD là tia phân  giác 

=> \(\dfrac{AD}{DB}=\dfrac{AC}{BC}=\dfrac{12}{15}=\dfrac{4}{5}\)

c) Đề bài sai nhé vì nếu \(AH^2=AH.HB\) 

                               \(\Leftrightarrow HB=HA\Rightarrow\Delta AHB\) vuông cân tại H

=> \(\widehat{ABH}=45^o\) => \(\Delta ABC\) vuông cân tại A => AB =AC  => 9=12(vô lý)

19 tháng 3 2022

à lộn HB là HC nha

DD
9 tháng 6 2021

d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)). 

suy ra \(AE\perp CD\).

Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).

Ta có: 

\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))

suy ra \(\widehat{CAE}=\widehat{ABM}\)

mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)

do đó \(BM\perp AE\).

Từ đây ta có đpcm.