\(OH\perp AB,OI\perp BC,OK\perp AC\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

MÌNH KO THẤY ĐƯỜNG KO THẤY BÀI GÌ HẾT

 Ta có: 
{ DE song song với AM (gt) => DE/ AM = BD / BM (Định lí Thalès) 
{ DF song song với AM (gt) => DF / AM = CD / CM (Định lí Thalès) 
=> DE / AM + DF / AM = BD / BM + CD / CM 
<=> (DE + DF) / AM = BD / (BC/2) + CD / (BC/2) = (BD + CD) / (BC/2) 
(Vì AM là trung tuyến trong tam giác ABC => M là trung điểm của BC => BM = CM = BC/2) 
<=> (DE + DF) / AM = BC / (BC/2) = 2BC / BC = 2 
<=> DE + DF = 2AM (điều phải chứng minh) 

b) 
- Xét tứ giác ANDM có: AN // DM (gt) và DN // AM (gt) 
=> Tứ giác ANDM là hình bình hành => AN = DM 

- Ta có: AN // BD (gt) 
=> AN / BD = NE / DE (Định lí Thalès) 
<=> NE = (DE . AN) / BD 
- Ta có: DE + DF = 2AM (cm câu a) 
<=> DE + (DE + NE + NF) = 2AM 
<=> 2DE + EF = 2AM 
<=> EF = 2AM - 2DE = 2(AM - DE) 
<=> EF = 2. {[(DE . BM) / BD] - DE} = 2. [(DE . BM - DE . BD) / BD] 
(do DE/ AM = BD / BM => AM = (DE . BM) / BD ) 
<=> EF = 2. [DE . (BM - BD) / BD] 
<=> EF = 2. (DE . DM) / BD = 2 . (DE . AN) / BD (vì AN = DM) 
<=> EF = 2NE 
<=> NE = EF / 2 
=> N là trung điểm của EF 
Vậy NE = NF (điều phải chứng minh) 

Giair giùm mình vài bài toán mình :) mình hứa sẽ tích cho các bạn thật nhiều1.Cho tam giác ABC.Qua D là trung đểm của cạnh BC ,kẻ một đường thẳng vuông góc với đường phân giác của góc A nó cắt AB ở M và AC ở N. cmr : BM=CN2.Vẽ ra phía ngoài 2 tam giác ABC các tam giác ABD và BCE cùng vuông cân tại B gọi M là trung điểm của AC.Chứng minh rằng DE=2BM3. Cho tam giác ABC có góc A từ.Trong góc A vẽ các...
Đọc tiếp

Giair giùm mình vài bài toán mình :) mình hứa sẽ tích cho các bạn thật nhiều

1.Cho tam giác ABC.Qua D là trung đểm của cạnh BC ,kẻ một đường thẳng vuông góc với đường phân giác của góc A nó cắt AB ở M và AC ở N. cmr : BM=CN

2.Vẽ ra phía ngoài 2 tam giác ABC các tam giác ABD và BCE cùng vuông cân tại B gọi M là trung điểm của AC.Chứng minh rằng DE=2BM

3. Cho tam giác ABC có góc A từ.Trong góc A vẽ các đoạn thẳng AD,AE sao cho AD vuông góc và bằng AB,AE vuông góc và bằng AC .Gọi M là trung điểm của DE .CMR : AM \(\perp\) BC

4.Vẽ ra ngoài tam giác ABC các tam giác ABD vuông cân tại B,ACE vuông cân tại C,Gọi M là trung điểm của DE.Tam giác BMC là tam giác gì ?? Vì sao?

5.Cho hình thang cân ABCD (AB\(//\) CD) có hai đường chéo AC và BD vuông góc với nhau.CMR chiều cao BH bằng đường Trung bình MN

Còn nhiều bài lắm các bn làm giúp mình nha

 

6
18 tháng 12 2018

, Tự vẽ hình và ghi giả thiết kết luận (mình không biết vẽ hình trên máy -_-")

Giải : Từ giả thiết ta có 

D là trung điểm của AB và MO

,E là trung điểm của AC và ON

=> ED là đường trung bình của cả hai tam giác ABC và OMN

Áp dụng định lý đường trung bình vào  tam giác trên ,ta được

\(\hept{\begin{cases}AD//BC,DE//MN\\DE=\frac{1}{2}BC,DE=\frac{1}{2}MN\end{cases}}\Rightarrow\hept{\begin{cases}MN//BC\\MN=BC\end{cases}}\)

Tứ giác MNCB có hai cạnh đối song song và bằng nhau nên nó là hình bình hành

18 tháng 12 2018

Từ từ ,hình như mình làm nhầm đề :) Để mình làm lại đã rồi trả lời bn sau nhé!!!!!@@

4 tháng 8 2016

d)  2 tam giác MCN và ACN có cùng chiều cao hạ từ C đến AN nên: \(\frac{S_{MCN}}{S_{ACN}}=\frac{MN}{AN}\)                              (1)

2 tam giác BMN và ABN có cùng chiều cao hạ từ B đến AN nên: \(\frac{S_{BMN}}{S_{ABN}}=\frac{MN}{AN}\)                                 (2)

Từ  (1)  và  (2)  ta suy ra \(\frac{MN}{AN}=\frac{S_{MCN}}{S_{ACN}}=\frac{S_{BMN}}{S_{ABN}}=\frac{S_{MCN}+S_{BMN}}{S_{ACN}+S_{ABN}}=\frac{S_{MBC}}{S_{ABC}}\)\(\Rightarrow\)\(\frac{MN}{AN}=\frac{S_{MBC}}{S_{ABC}}\)

Chứng minh tương tự ta có \(\frac{MP}{BP}=\frac{S_{AMC}}{S_{ABC}}\)và \(\frac{MQ}{CQ}=\frac{S_{ABM}}{S_{ABC}}\)

Do đó \(\frac{MN}{AN}+\frac{MP}{BP}+\frac{MQ}{CQ}=\frac{S_{MBC}+S_{AMC}+S_{ABM}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(đpcm).

3 tháng 8 2016

a) Tg OBD và Tg ECO có 
g OBD = g ECO (tg ABC cân tại A) (1) 
g BOD = g OEC (gt) (2) 
(1) và (2) => Tg OBD đồng dạng Tg ECO 
=>OB/EC = BD/CO => OB*CO = EC*BD. 
Mà OB = CO => OBbình = EC*BD 
b) Ta có: gDOE = 180 độ - (gBOD + gEOC) 
= 180 độ - (gOEC + gCOE) 
= 180 độ - (180 độ - gOCE) 
= gOCE = gBCA = const (3) 
c) Theo câu a: Tg OBD đồng dạng Tg ECO => OD/EO = BD/CO => OD/ EO = BD/BO => 
=> OD*BO = EO*BD => EO/OB = OD/BD (4) 
Mặt khác: từ(3) =>gDOE = gOBD (5) 
từ (4) và (5) => TgEOD đồng dạng TgOBD