Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xet 2 tam giác KPC và tam giac HPB
CÓ góc PKC=góc PHB
góc KPC=góc HPB(đ.đ)
suy ra tam giac KPC đồng dạng với tam giác HPB
Nên ta có: KP/HP=KC/HB=PC/PB
Suy ra KB.PB=PC.HP
Cho mk loi nhan xet nha
a , vẽ hình
xét \(\Delta BPH\) và \(\Delta CPK\) có
\(\widehat{BHP}=\widehat{CKP}=90^o\)
\(\widehat{HBP}=\widehat{KCP}\)
=> \(\Delta BPH\) đồng dạng với \(\Delta CPK\)
=> \(\frac{BP}{CP}=\frac{HP}{PH}\)
hay \(BP.KP=CP.HP\left(đpcm\right)\)
1) Làm được câu a chưa
a) Xét tam giác HPB và KPC có:
\(\widehat{ABP}=\widehat{ACP}\)
\(\widehat{H}=\widehat{K}=90^o\)
\(\Rightarrow\) Tam giác HPB đồng dạng với tam giác KCP
\(\Rightarrow BP.KP=CP.HP\)
b) Tam giác HBC vuông có D là trung điểm cạnh huyền BC
\(\Rightarrow HD=\frac{BC}{2}\)
Tương tự ta cũng có \(KD=\frac{BC}{2}\)
\(\Rightarrow DK=DH\left(đpcm\right)\)
2) Gọi O là tâm hình bình hành. Qua M kẻ đường thẳng song song BD cắt AC; AD theo thứ tự tại N; P => N là trung điểm MP. Qua K kẻ đường thẳng song song BD cắt AB tại Q. Không mất tính tổng quát giả thiết Q nằm giữa A và G, G nằm giữa Q và N .Ta có:
GQ/GN = KQ/MN
<=> GQ/GN = KQ/NP ( vì MN = NP)
<=> GQ/GN = AQ/AN ( vì KQ/NP = GN/AN)
<=> GQ/AQ = GN/AN
<=> (AG - AQ)/AQ = (AN - AG)/AN ( vì GQ = AG - AQ; GN = AN - AG)
<=> 1/AN + 1/AQ = 2/AG
<=> OA/AN + OA/AQ = 2.OA/AG
<=> AB/AM + AD/AK = AC/AG (đpcm) ( vì OA/AN = AB/AM; OA/AQ = AD/AK; AC = 2OA)
câu 1b bạn làm sai r, H,P,C có thẳng hàng đâu
còn câu 2 dòng thứ 6 sao ra dòng thứ 7 vậy bạn, AQ=GN hé.sao ra???
a, tam giác ABC cân tại A (gt)
=> góc B = góc C (đl)
xét tam giác HBD và tam giác KCE có : BD = CE (gt)
góc BHD = góc EKC = 90 do DH _|_ AB; EK _|_ AC (gt)
=> tam giác HBD = tam giác KCE (ch-gn)
bạn tự vẽ hinh nha
1)
Xét tam giác ABC có
hai đường cao BE và CD cắt nhau tại H nên H là trực tâm
do đó \(AH\perp BC\)
mà \(HM\perp BC\)
suy ra AH trùng với HM
vậy A; H; M thẳng hàng
b)
dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)
dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)
2)
a)
Xét tam giác ABC và tam giác DEC
có \(\widehat{BAC}=\widehat{CDE}\)
\(\widehat{ACB}\)chung
nên tam giác ABC đồng dạng với tam giác DEC
\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)
b)
Xét tam giác ABC
có AD là đường phân giác
\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)
Từ (1) và (2) suy ra
\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)
a)xét tứ giác ADME có
CÂB =AÊM=góc ADM=900
=>ADME là hcn
b)vì MA là đg trung tuyến nên MA=MC=MB
xét tam giác CMA có
CM=MA(cmt)
CÊM=AÊM=900
EM là cạnh chung
=>...(cạnh huyền-cạnh góc vuông)
=>CE=EA
mà EA=MD(EAMD là hcn) nên CE=MD (1)
ta có MA=MC(cmt)
mà MA=ED(EAMD là hcn)
=>MC=ED (2)
xét tứ giác CMDE có CE=MD,CM=ED( 1 và 2)
=>CMED là hbh
c)
xét tam giác MDB vuông tại D có DI là trung tuyến nên MI=IB=ID
xét tứ giác MKDI có
KM=KD(K là giao điểm hai dg chéo của hcn)
KM=MI(vì MA=MB mà K và I lần lượt là trung điểm của chúng)
MI=ID(cmt)
=>KMID là thoi
mà KI là đg chéo của góc I nên KI cũng là p/g của góc I
(ck hk tốt nhé)