Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔOBD và ΔECO có
góc OBD=góc ECO
góc DOB=góc OEC
Do đó: ΔOBD đồng dạng với ΔECO
SUy ra: \(\dfrac{OB}{EC}=\dfrac{BD}{CO}\)
hay \(BD\cdot EC=OB^2\)
b: góc DOE=180 độ-góc DOB-góc EOC
=180 độ-góc OEC-góc EOC
=180 độ-180 độ+góc ACB
=góc ACB=const(3)
c: Vì ΔOBD đồng dạng với ΔECO
nên OD/EO=BD/CO=>OD/EO=BD/BO
=>OD*BO= EO*BD=>EO/OB =OD/BD (4)
Mặt khác :từ (3) =>g DOE =g OBD (5)
Từ (4) và (5) => tg EOD đồng dạng tg OBD
Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i: Đoạn thẳng [B, A] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng n: Đoạn thẳng [B, D] Đoạn thẳng p: Đoạn thẳng [C, E] Đoạn thẳng q: Đoạn thẳng [D, E] Đoạn thẳng r: Đoạn thẳng [D, M] Đoạn thẳng s: Đoạn thẳng [M, E] Đoạn thẳng a: Đoạn thẳng [A, H] A = (-0.88, 1.82) A = (-0.88, 1.82) A = (-0.88, 1.82) C = (8.6, 1.86) C = (8.6, 1.86) C = (8.6, 1.86) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h
a. Ta thấy \(\widehat{DAB}=\widehat{MAC}\) (Cùng phụ với góc \(\widehat{BAM}\)); \(\widehat{DBA}=\widehat{MCA}\)(Cùng phụ với góc \(\widehat{ABM}\))
Vậy nên \(\Delta CAM\sim\Delta BAD\left(g-g\right)\)
b. Do \(\Delta CAM\sim\Delta BAD\left(cma\right)\Rightarrow\frac{AM}{AD}=\frac{AC}{AB}\Rightarrow\frac{AM}{AC}=\frac{AD}{AB}\)
Mà \(\widehat{DAM}=\widehat{BAC}=90^o\Rightarrow\Delta ADM\sim\Delta ABC\left(c-g-c\right)\)
c. Ta thấy \(\widehat{ABM}=\widehat{ACE}\) (Cùng phụ với góc \(\widehat{ACM}\)); \(\widehat{BAM}=\widehat{CAE}\)(Cùng phụ với góc \(\widehat{MAC}\))
Vậy nên \(\Delta BAM\sim\Delta CAE\left(g-g\right)\Rightarrow\frac{AE}{AM}=\frac{AC}{AB}\Rightarrow\frac{AE}{AC}=\frac{AM}{AB}\)
Từ câu b: \(\frac{AD}{AB}=\frac{AM}{AC}\)và ta vừa cm \(\frac{AE}{AC}=\frac{AM}{AB}\Rightarrow\frac{AD.AE}{AB.AC}=\frac{AM^2}{AC.AB}\Rightarrow AD.AE=AM^2\)
d. Do \(AD.AE=AM^2;\widehat{DAM}=\widehat{MAE}=90^o\Rightarrow\Delta DAM\sim\Delta MAE\left(c-g-c\right)\)
\(\Rightarrow\widehat{DMA}=\widehat{MEA}\Rightarrow\widehat{DME}=90^o\). Lại có \(\widehat{EDM}=\widehat{ABC}\Rightarrow\Delta ABC\sim\Delta MDE\left(g-g\right)\)
Để \(\frac{S_{ABC}}{S_{MDE}}=\frac{1}{4}\Rightarrow\) tỉ số đồng dạng \(k=\frac{1}{2}.\)
Gọi AH là đường cao của tam giác ABC, khi đó AM = 2AH \(\Rightarrow\widehat{AMB}=30^o.\)
Vậy M là một điểm thuộc AB sao cho \(\widehat{AMB}=30^o.\)
A B C D E M F N K
Gọi F, K lần lượt là giao của hai đường thẳng EM, DM với cạnh BC
Áp dụng định lí Ta – lét trong \(\Delta ABC\)có:
DK // AC \(\Rightarrow\frac{AD}{AB}=\frac{CK}{BC}\); EF // AB \(\Rightarrow\frac{AE}{AC}=\frac{BF}{BC}\left(1\right)\)
Áp dụng định lí Ta – lét trong \(\Delta ABN\)có:
MF // AB \(\Rightarrow\frac{MN}{AN}=\frac{FN}{BN}\left(2\right)\)
Áp dụng định lí Ta – lét trong \(\Delta ACN\)có:
MK // AC \(\Rightarrow\frac{MN}{AN}=\frac{NK}{NC}\left(3\right)\)
Từ (2) và (3) \(\Rightarrow\frac{MN}{AN}=\frac{FN}{BN}=\frac{NK}{NC}=\frac{FN+NK}{BN+NC}=\frac{FK}{BC}\left(4\right)\)
Từ (1) và (4) \(\Rightarrow\frac{AD}{AB}+\frac{AE}{AC}+\frac{MN}{AN}\)
\(=\frac{CK}{BC}+\frac{BF}{BC}+\frac{FK}{BC}=\frac{CK+BF+FK}{BC}=\frac{BC}{BC}=1\)
Vậy tổng \(\frac{AD}{AB}+\frac{AE}{AC}+\frac{MN}{AN}\)có giá trị không đổi.
d) 2 tam giác MCN và ACN có cùng chiều cao hạ từ C đến AN nên: \(\frac{S_{MCN}}{S_{ACN}}=\frac{MN}{AN}\) (1)
2 tam giác BMN và ABN có cùng chiều cao hạ từ B đến AN nên: \(\frac{S_{BMN}}{S_{ABN}}=\frac{MN}{AN}\) (2)
Từ (1) và (2) ta suy ra \(\frac{MN}{AN}=\frac{S_{MCN}}{S_{ACN}}=\frac{S_{BMN}}{S_{ABN}}=\frac{S_{MCN}+S_{BMN}}{S_{ACN}+S_{ABN}}=\frac{S_{MBC}}{S_{ABC}}\)\(\Rightarrow\)\(\frac{MN}{AN}=\frac{S_{MBC}}{S_{ABC}}\)
Chứng minh tương tự ta có \(\frac{MP}{BP}=\frac{S_{AMC}}{S_{ABC}}\)và \(\frac{MQ}{CQ}=\frac{S_{ABM}}{S_{ABC}}\)
Do đó \(\frac{MN}{AN}+\frac{MP}{BP}+\frac{MQ}{CQ}=\frac{S_{MBC}+S_{AMC}+S_{ABM}}{S_{ABC}}=\frac{S_{ABC}}{S_{ABC}}=1\)(đpcm).
a) Tg OBD và Tg ECO có
g OBD = g ECO (tg ABC cân tại A) (1)
g BOD = g OEC (gt) (2)
(1) và (2) => Tg OBD đồng dạng Tg ECO
=>OB/EC = BD/CO => OB*CO = EC*BD.
Mà OB = CO => OBbình = EC*BD
b) Ta có: gDOE = 180 độ - (gBOD + gEOC)
= 180 độ - (gOEC + gCOE)
= 180 độ - (180 độ - gOCE)
= gOCE = gBCA = const (3)
c) Theo câu a: Tg OBD đồng dạng Tg ECO => OD/EO = BD/CO => OD/ EO = BD/BO =>
=> OD*BO = EO*BD => EO/OB = OD/BD (4)
Mặt khác: từ(3) =>gDOE = gOBD (5)
từ (4) và (5) => TgEOD đồng dạng TgOBD