K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2021

Cho tam giác ABC, D là trung điểm của cạnh AB. Qua D kẻ đường thẳng song song với BC và cắt AC tại E. Khi đó, ta có:  

      A. AE = EC               B. AE = 2EC          C.  AE > EC             D. AE < EC

HT

10 tháng 12 2023

a: Xét ΔABC có DE//BC

nên \(\dfrac{AE}{EC}=\dfrac{AD}{DB}\)

=>\(\dfrac{AD}{8}=\dfrac{3}{4}\)

=>\(AD=8\cdot\dfrac{3}{4}=6\left(cm\right)\)

AB=BD+AD

=6+8

=14(cm)

b: Xét ΔABC có DE//BC

nên \(\dfrac{AD}{DB}=\dfrac{AE}{EC}\)

mà \(\dfrac{AD}{DB}=\dfrac{EC}{AE}\)

nên \(\dfrac{AE}{EC}=\dfrac{EC}{AE}\)

=>\(AE^2=EC^2\)

=>AE=EC

=>E là trung điểm của AC

Xét ΔABC có

E là trung điểm của AC

ED//BC

Do đo: D là trung điểm của AB

a: Xét tứ giác AEDF có

AE//DF

AF//DE

Do đó: AEDF là hình bình hành

Hình bình hành AEDF có AD là phân giác của góc FAE

nên AEDF là hình thoi

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{CD}{DB}=\dfrac{AC}{AB}\left(1\right)\)

Xét ΔABC có DE//AB

nên \(\dfrac{CD}{DB}=\dfrac{CE}{EA}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{AC}{AB}=\dfrac{EC}{EA}\)

=>\(AC\cdot AE=AB\cdot EC\)

a: Xét ΔABD và ΔEDB có

góc ABD=góc EDB

BD chung

góc ADB=góc EBD

=>ΔABD=ΔEDB

b: Xét tứ giác ABED có

AB//ED

AD//BE

=>ABED là hình bình hành

=>AE cắt BD tại trung điểm của mỗi đường

=>I là trung điểm của AE

=>IA=IE

c: ID=BI

=>ID=1/2BD

=>ID=1/2CD
=>CD=2/3CI

Xét ΔAEC có

CI là trung tuyến

CD=2/3AE

=>D là trọng tâm

mà K là trung điểm của EC

nên A,D,K thẳng hàng

AD=6,8-4=2,8cm

DE//BC

=>AE/EC=AD/DB

=>4,2/EC=2,8/4=7/10

=>EC=6cm

Xét ΔCAB có DE//AB

nên CE/EA=CD/DB

=>CE/EA=5/24,3

=>CE/5=EA/24,3=(CE+EA)/(5+24,3)=10/29,3=100/293

=>CE=500/293cm; EA=2430/293(cm)