K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2019

A B C M E D

CM: a) Xét t/giác ABM và t/giác ACM

có AB = AC (gt)

  BM = MC (gt)

 AM : chung

=> t/giác ABM = t/giác ACM (c.c.c)

b) Ta có: t/giác ABM = t/giác ACM (cmt)

=> góc AMB = góc AMC (hai góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^0\)

=> \(2\widehat{AMB}=180^0\)

=> \(\widehat{AMB}=180^0:2=90^0\)

=> AM \(\perp\)BC ( Đpcm)

c) Xét t/giác AMD và t/giác CED

có  AD = CD (gt)

 góc ADM = góc EDC (đối đỉnh)

DM = DE (gt)

=> t/giác AMD = t/giác CED (c.g.c)

=> góc MAD = góc DCE (hai góc tương ứng)

Mà góc MAD và góc DCE ở vị trí so le trong

=> AM // EC (Đpcm)

d) Ta có : t/giác MAD = t/giác DCE (cmt)

=> AM = CE (hai cạnh tương ứng)

Do AM // EC (cmt) => góc AMC + góc MCE = 1800 (trong cùng phía)

=> góc MCE = 1800 - góc AMC = 1800 - 900 = 900 (vì góc AMB = góc AMC mà góc AMB = 900 => góc AMC = 900)

Xét t/giác AMC và t/giác MCE

có AM = CE (cmt)

 góc AMC = góc MCE (cmt)

MC : chung

=> t/giác AMC = t/giác MCE (c.g.c)

=> ME = AC (hai cạnh tương ứng)

mà MD = DE = ME/2

hay AC/2 = MD (Đpcm)

10 tháng 12 2020

a/ Xét t/g AMD và t/g BMC có

AM = BM (M là TĐ AB)

\(\widehat{AMD}=\widehat{BMC}\) (đối đỉnh) MD = MC (GT)

=> t/g AMD = t/g BMC (c.g.c)

b/ Xets t/g BMD và t/g AMC có

BM = AM

\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh) MD = MC (GT)

=> t/g BMD = t/g AMC (c.g.c)

=> \(\widehat{ABD}=\widehat{BAC}=90^o\)

=> BD ⊥ AB (1)

c/  Xét t/g BNE và t/g CNA có

BN = CN (N là TĐ BC)

\(\widehat{BNE}=\widehat{CNA}\) (đối đỉnh) NE = NA (GT)

=> T/g BNE = t/g CNA (c.g.c)

=> \(\widehat{EBN}=\widehat{CAB}=90^o\) (2 góc t/ứ)

=> BE ⊥ AB (2) Từ (1) và (2)

=> D , B , E thẳng hàng

1 tháng 2 2018

a) Xét tam giác AMB và tam giác DMC có:

BM = CM (gt)

AM =DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)

b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)

Chúng lại ở vị trí so le trong nên AB //CD.

c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.

Suy ra MA = ME

Lại có MA = MD nên ME = MD.

d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.

Suy ra ED // BC

Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.

Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)

6 tháng 12 2021

NGU

29 tháng 12 2023

a: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

b: Xét ΔMEB và ΔMFC có

ME=MF

\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMEB=ΔMFC

=>\(\widehat{MEB}=\widehat{MFC}\)

=>\(\widehat{MFC}=90^0\)

=>CF\(\perp\)AD

c: Xét tứ giác BFCE có

M là trung điểm chung của BC và FE

=>BFCE là hình bình hành

=>BF//CE và BF=CE

Ta có: BF//CE

B\(\in\)FG

Do đó: BG//CE

Ta có: BF=CE

BF=BG

Do đó: BG=CE
Xét tứ giác BGEC có

BG//EC

BG=EC

Do đó: BGEC là hình bình hành

=>BE cắt GC tại trung điểm của mỗi đường

mà H là trung điểm của BE

nên H là trung điểm của GC

=>G,H,C thẳng hàng

9 tháng 8 2017

. A B C M D E I 1 1 2 2 2 1 2

\(Xét\)\(\Delta AMB\)\(\Delta DMC\)có:

\(AM=MC\)(M là trung điểm của AC)

\(\widehat{M}_1=\widehat{M}_2\)(2 góc đối đỉnh)

\(BM=MC\)(gt)

=>\(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=>\(AB=DC;\widehat{A}_1=\widehat{C}_1\)

Mà 2 góc này ở vị trí so le trong

=>AB//DC

=>\(\widehat{ABE}=\widehat{DCB}\)(2 góc đồng vị)

Xét \(\Delta ABE\)\(\Delta DCB\)có:

\(AB=DC\)

\(\widehat{ABE}=\widehat{DCB}\)

\(EB=BC\)

=>\(\Delta ABE=\Delta DCB\left(c-g-c\right)\)

=>\(AE=BD;\widehat{AEB}=\widehat{DBC}\)

Mà 2 góc này ở vị trí đồng vị

=>AE//BD

Xét \(\Delta AIE\)\(\Delta BID\)có:

\(\widehat{A}_2=\widehat{B}_2\)(AE//BD)

\(AE=DC\)

\(\widehat{AEI}=\widehat{BDI}\)(AE//BD)

=>\(\Delta AIE=\Delta BID\left(g-c-g\right)\)

=>\(AI=BI\)

Vậy AI=IB

17 tháng 12 2023

a: Xét ΔABM và ΔACM có

AB=AC

BM=CM

AM chung

Do đó: ΔABM=ΔACM

b: Ta có: ΔABM=ΔACM

=>\(\widehat{BAM}=\widehat{CAM}\)

=>\(\widehat{DAM}=\widehat{EAM}\)

Xét ΔDAM và ΔEAM có

DA=EA

\(\widehat{DAM}=\widehat{EAM}\)

AM chung

Do đó: ΔDAM=ΔEAM

=>MD=ME

c: Xét ΔNKD và ΔNMB có

NK=NM

\(\widehat{KND}=\widehat{MNB}\)(hai góc đối đỉnh)

ND=NB

Do đó: ΔNKD=ΔNMB

=>\(\widehat{NKD}=\widehat{NMB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên KD//BM

mà M\(\in\)BC

nên KD//BC

Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

nên DE//BC

Ta có: KD//BC

DE//BC

KD,DE có điểm chung là D

Do đó: K,D,E thẳng hàng