Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(BC;CA;AB\right)=\left(a;b;c\right)\)
Kẻ hai trung tuyến AM, CN cắt nhau tại G
\(AG^2=\dfrac{4}{9}AM^2=\dfrac{1}{9}\left(2b^2+2c^2-a^2\right)\)
\(BG^2=\dfrac{4}{9}BN^2=\dfrac{1}{9}\left(2a^2+2c^2-b^2\right)\)
Pitago tam giác vuông ABG:
\(AG^2+BG^2=AB^2\Leftrightarrow\dfrac{1}{9}\left(2b^2+2c^2-a^2+2a^2+2c^2-b^2\right)=c^2\)
\(\Leftrightarrow a^2+b^2=5c^2\Leftrightarrow5=\dfrac{a^2+b^2}{c^2}\ge\dfrac{\left(a+b\right)^2}{2c^2}\)
\(\Rightarrow S=\dfrac{a+b}{c}\le\sqrt{10}\)
Gọi G là trọng tâm tam giác, các trung tuyến \(AM=m_a\) ; \(BN=m_b\)
Đặt cạnh \(BC=a;AC=b;AB=c\)
\(AG^2=\frac{4}{9}m_a^2=\frac{1}{9}\left(2b^2+2c^2-a^2\right)\)
\(BG^2=\frac{4}{9}m_b^2=\frac{1}{9}\left(2a^2+2c^2-b^2\right)\)
Mặt khác theo Pitago: \(AG^2+BG^2=AB^2\)
\(\Leftrightarrow\frac{1}{9}\left(4c^2+a^2+b^2\right)=c^2\)
\(\Leftrightarrow a^2+b^2=5c^2\)
\(\Leftrightarrow5c^2\ge\frac{1}{2}\left(a+b\right)^2\Leftrightarrow\frac{\left(a+b\right)^2}{c^2}\le10\)
\(\Leftrightarrow\frac{a+b}{c}\le\sqrt{10}\)
mik nghĩ câu a.b. bn làm đc,
c,BM=MC(AM là trung tuyến )=>AM c~ là đường cao(đặc biêt của tam giác cân) (1)
xét 2 tam giácvuông BDM và ta giác vuông CDM
MD chung,
MB=MC(trung tuyến AM)
=>2 tam giác vuông BDM=CDM(2 cạnh góc vuông)
=>DM là trung tuyến của BC (2)
từ 1 và 2,ta thấy A,M,D đều thuộc trung tuyến của BC,=>A,M,D thẳng hàng
mik làm sai ở đâu thì nhắc nha
Gọi G là giao điểm BM và CN. Đặt AB=c, AC=b
Ta có: \(BM^2=\dfrac{2\left(a^2+c^2\right)-b^2}{4}\) ; \(\Rightarrow BG^2=\left(\dfrac{2}{3}BM\right)^2=\dfrac{2\left(a^2+c^2\right)-b^2}{9}\)
\(CN^2=\dfrac{2\left(a^2+b^2\right)-c^2}{4}\Rightarrow CG^2=\dfrac{2\left(a^2+b^2\right)-c^2}{9}\)
Mặt khác \(BG^2+CG^2=BC^2\)
\(\Rightarrow\dfrac{2\left(a^2+c^2\right)-b^2}{9}+\dfrac{2\left(a^2+b^2\right)-c^2}{9}=a^2\)
\(\Rightarrow b^2+c^2=5a^2\)
Áp dụng định lý hàm cos:
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{5a^2-a^2}{2bc}=\dfrac{2a^2}{bc}\Rightarrow bc=\dfrac{2a^2}{cos\alpha}\)
\(S_{ABC}=\dfrac{1}{2}bcsinA=\dfrac{1}{2}.\dfrac{2a^2}{cos\alpha}.sin\alpha=a^2.tan\alpha\)
tự làm là mỗi hạnh phúc của mọi công dân