K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

D nằm chỗ nào của \(\Delta\)

4 tháng 2 2020

Hình thế này à bạn? Đề chả rõ ràng gì cả. Nguyễn Trà My

12 tháng 4 2020

Tại sao mà nói AD là tia phân giác rồi mà còn CD > DB ????

2 tháng 5 2020

a) Trong \(\Delta ABC\),do AB < AC(gt) nên \(\widehat{C}< \widehat{B}\)(góc đối diện với cạnh lớn hơn là góc lớn hơn)

\(\widehat{ADB},\widehat{ADC}\)theo thứ tự là góc ngoài tại đỉnh D của \(\Delta ADC,\Delta ADB\) ta có :

\(\hept{\begin{cases}\widehat{ADB}=\widehat{C}+\widehat{A_1}\left(1\right)\\\widehat{ADC}=\widehat{B}+\widehat{A_2}\left(2\right)\end{cases}}\)

Vì \(\widehat{C}< \widehat{B}\),còn \(\widehat{A_1}=\widehat{A_2}\)(gt) , do đó từ 1 và 2 => \(\widehat{ADB}< \widehat{ADC}\)

b) Do AB < AC(gt),trên cạnh AC lấy điểm E sao cho AE = AB

Xét \(\Delta ADB\) và \(\Delta ADE\)có :

AD chung

\(\widehat{DAB}=\widehat{DAE}\)

AB = AE(gt)

=> \(\Delta ADB=\Delta ADE\left(c.g.c\right)\)

Nên \(\widehat{AED}=\widehat{B}\) mà \(\widehat{AEB}+\widehat{DEC}=180^0\)(2 góc kề bù),do đó \(\widehat{B}+\widehat{DEC}=180^0\left(3\right)\)

Mặt khác \(\Delta ABC\)thì \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\), do đó \(\widehat{B}+\widehat{C}< 180^0\left(4\right)\)

Từ 3 -> 4 ta có \(\widehat{DEC}>\widehat{C}\)

Trong \(\Delta DEC\)ta có DE < DC,nhưng DE = DB(cạnh tương ứng của hai tam giác bằng nhau : \(\Delta ADB=\Delta ADE\))

Vậy DB < DC hay DC > DB

29 tháng 3 2019

a, Xét △ABD và △ACD có:

AB=AC(gt)AB=AC(gt)

Aˆ1=Aˆ2A^1=A^2 (vì AD là phân giác của ∠A)

AD chung

⇒ΔABD=ΔACD(c.g.c)⇒ΔABD=ΔACD(c.g.c)

Vậy ΔABD=ΔACD(đpcm)ΔABD=ΔACD(đpcm)

b, Vì △ABD=△ACD (chứng minh trên) nên ta có:

Bˆ=CˆB^=C^ (hai góc tương ứng)

Vậy Bˆ=Cˆ(đpcm)B^=C^(đpcm)

c, Vì △ABD=△ACD (chứng minh trên) nên ta có:

Dˆ1=Dˆ2D^1=D^2 (hai góc tương ứng)

Mà Dˆ1+Dˆ2=1800D^1+D^2=1800 (kề bù)

⇒Dˆ1=Dˆ2=18002=900⇒D^1=D^2=18002=900

Vậy AD⊥BC(đpcm)

2 tháng 5 2020

6754-4567=

11 tháng 12 2023

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED
=>BD=ED

b: Ta có: ΔABD=ΔAED

=>\(\widehat{ABD}=\widehat{AED}\)

=>\(\widehat{ABC}=\widehat{AEK}\)

Xét ΔAEK và ΔABC có

\(\widehat{AEK}=\widehat{ABC}\)

AE=AB

\(\widehat{EAK}\) chung

Do đó: ΔAKE=ΔACB

=>\(\widehat{AKE}=\widehat{ACB}\)

c: Ta có: ΔAKE=ΔACB

=>KE=CB

Ta có: BD+DC=BC

DE+DK=EK

mà BD=DE và BC=EK

nên DC=EK

Xét ΔDBK và ΔDEC có

DB=DE

\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)

DK=DC

Do đó: ΔDBK=ΔDEC

=>BK=EC

Xét ΔBKE và ΔCEB có

BK=EC

BE=CB

BE chung

Do đó: ΔBKE=ΔCEB

10 tháng 5 2017

A B C D H E K

a)Xét tam giác AHB và tam giác AHE ( đều vuông tại H )

      AH là cạnh chung

      \(\widehat{BAH}=\widehat{HAE}\)(Vì AD là tia phân giác)

            \(\Rightarrow\Delta AHB=\Delta AHE\)(cạnh góc vuông và  góc nhọn kề cạnh ấy)

b)Vì AH vừa là tia phân giác vừa là tia vuông góc 

       \(\Rightarrow\Delta ABE\) là tam giác cân mà lại có góc BAE bằng 600

      \(\Rightarrow\Delta ABE\) là tam giác đều\(\Rightarrow\)AH cũng là đường trung tuyến \(\Rightarrow\)BH=HE(1)

              Vì KH//AB\(\Rightarrow\widehat{BAE}=\widehat{HKE};\widehat{KHE}=\widehat{ABE}\)

                       Mà góc KEH chung

       \(\Rightarrow\Delta KHE\) là tam giác đều

        \(\Rightarrow KH=HE\left(2\right)\)

Từ (1) và (2) suy ra:KH=HB=HE

      Theo định lý nếu trong tam giác cạnh đối diện với cạnh huyền bằng nửa cạnh huyền thì tam giác đó vuông

 \(\Rightarrow\Delta BKE\) vuông tại K

   \(\Rightarrow\widehat{BKE}=90^0\)