Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: ta có: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\)
Để DE\(\perp\)AC thì \(\widehat{AED}=90^0\)
=>\(\widehat{ABD}=\widehat{ABC}=90^0\)
c: Xét ΔAEK và ΔABC có
\(\widehat{AEK}=\widehat{ABC}\)
AE=AB
\(\widehat{KAE}\) chung
Do đó: ΔAEK=ΔABC
d: Ta có: ΔAEK=ΔABC
=>EK=BC và AK=AC
Ta có: AB+BK=AK
AE+EC=AC
mà AB=AE và AK=AC
nên BK=EC
Ta có: DE+DK=EK
DB+DC=BC
mà EK=BC và DE=DB
nên DK=DC
Xét ΔKBE và ΔCEB có
KB=CE
BE chung
KE=CB
Do đó:ΔKBE=ΔCEB
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Suy ra: BE=DE
b: Ta có: BE=DE
nên E nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
hay AE\(\perp\)BD
c: Xét ΔBEK và ΔDEC có
\(\widehat{KBE}=\widehat{CDE}\)
BE=DE
\(\widehat{BEK}=\widehat{DEC}\)
Do đó: ΔBEK=ΔDEC
d: Xét ΔAKC có
AB/BK=AD/DC
nên BD//KC
d) tam giác KBE = t/g CDE
=> KE = CE ( 2 cạnh tương ứng)
=> t/g KEC cân tại E
=> góc EKC = g ECK (3)
g BED= g KEC (4)
Từ (2),(3),(4) => gOBE=gODE=gBED=gKEC
=> BD//KC
Mik sửa đề nha. vì đề bài cho mik k vẽ được.
" Cho tam giác ABC có AB<AC,AD là đường phân giác (D thuộc BC). trên cạnh AC lấy điểm E sao cho AB=AE. đường thẳng DE cắt đường thẳng AB tại K
CMR: a) DB = DE
b) AK = AC
c) GÓC DEC > GÓC ACB
A B C D E K
Làm
a) Xét tam giác ADB và tam giác ADE có:
AB = AE ( gt )
\(\widehat{BAD}=\widehat{EAD}\)( AD là tia phân giác góc A )
AD chung.
=> Tam giác ADB = tam giác ADE ( c.g.c )
=> BD = DE ( hai cạnh tương ứng )
b) Vì tam giác ADB = tam giác ADE ( cmt )
=> \(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\widehat{ABD}+\widehat{DBK}=180^0\)( hai góc kề bù )
\(\widehat{AED}+\widehat{DEC}=180^0\)
Mà \(\widehat{ABD}=\widehat{AED}\)
=> \(\widehat{DBK}=\widehat{DEC}\)
Xét tam giác BDK và tam giác EDC có:
\(\widehat{DBK}=\widehat{DEC}\)( cmt )
BD = DE ( cmt )
\(\widehat{BDK}=\widehat{EDC}\)
=> Tam giác BDK = tam giác EDC ( g.c.g )
=> BK = EC
Ta có: AB + BK = AK
AE + EC = AC
=> Mà: AB = AE
BK = EC
=> AK = AC.
câu c kiểu j ý
# Học tốt#
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
=>BD=ED
b: Ta có: ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\)
=>\(\widehat{ABC}=\widehat{AEK}\)
Xét ΔAEK và ΔABC có
\(\widehat{AEK}=\widehat{ABC}\)
AE=AB
\(\widehat{EAK}\) chung
Do đó: ΔAKE=ΔACB
=>\(\widehat{AKE}=\widehat{ACB}\)
c: Ta có: ΔAKE=ΔACB
=>KE=CB
Ta có: BD+DC=BC
DE+DK=EK
mà BD=DE và BC=EK
nên DC=EK
Xét ΔDBK và ΔDEC có
DB=DE
\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)
DK=DC
Do đó: ΔDBK=ΔDEC
=>BK=EC
Xét ΔBKE và ΔCEB có
BK=EC
BE=CB
BE chung
Do đó: ΔBKE=ΔCEB