Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
a. Xét ΔHBA và ΔABC có:
\(\widehat{H}=\widehat{A}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔHBA \(\sim\) ΔABC (g.g)
b. Vì ΔABC vuông tại A
Theo đ/lí Py - ta - go ta có:
BC2 = AB2 + AC2
BC2 = 32 + 42
\(\Rightarrow\) BC2 = 25 cm
\(\Rightarrow\) BC = \(\sqrt{25}=5\) cm
Ta lại có: ΔHBA \(\sim\) ΔABC
\(\dfrac{AH}{CA}=\dfrac{BA}{BC}\)
\(\Leftrightarrow\dfrac{AH}{4}=\dfrac{3}{5}\)
\(\Rightarrow\) AH = 2,4 cm
vì góc B = 2 góc C
=> AC = 2 AB ( quan hệ giữa góc và cạnh )
mà AB = 4 cm
=> AC = 2 x 4 =8 ( cm )
Vậy AC = 8cm
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
tính chất phân giác\(=>\dfrac{BH}{AB}=\dfrac{MH}{AM}=>\dfrac{BH}{60}=\dfrac{5}{12}=>BH=25cm\)
do tam giác ABC cân tại A vì AB=AC nên AH là đường cao đồng thời là phân giác
\(=>\dfrac{AB}{AC}=\dfrac{BH}{HC}=>1=\dfrac{25}{HC}=>HC=25cm=>BC=50cm\)
kẻ BD là phân giác góc B tam giác ABC có : AB / BC = AD/CD ( đường phân giác trong tam giác ) suy ra AB / AD = BC/CD= ( AB +BC ) / ( AD+ CD)= 9/ AC suy ra AB/AD=9/AC SUY RA AD= (AB.AC)/ 9 =4/9 AC chứng minh tam giác ABD đồng dạng với ACB do : góc A chung , góc ABD = góc ACB SUY RA AB/AC = AD/AB suy ra AC.AD = AB .AB suy ra AC ^2 = 16: 4/9 , Suy ra AC^2 = 36 suy ra AC =6