K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2015

Kẻ đường cao AH. Ta tính được BH = 16. Theo Py-ta-go: AH = \(16\sqrt{3}\)   => CH = 16 => BC = 32

15 tháng 6 2022

chịu hoi =))))))

 

15 tháng 6 2022

em mới học lớp 7 hà

năm nay lên lớp 8 =)))))

9 tháng 11 2023

\(\left[{}\begin{matrix}\\\\\\\end{matrix}\right.\prod\limits^{ }_{ }\int_{ }^{ }dx\sinh_{ }^{ }⋮\begin{matrix}&&&\\&&&\\&&&\\&&&\\&&&\\&&&\end{matrix}\right.\Cap\begin{matrix}&&\\&&\\&&\\&&\\&&\\&&\end{matrix}\right.\)

1: \(\cos70^0=\dfrac{AB^2+BC^2-AC^2}{2\cdot AB\cdot BC}\)

\(\Leftrightarrow48,68-AC^2=13,57\)

hay \(AC=5,93\left(cm\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

Kẻ $BH\perp AC$ với $H\in AC$

Xét tam giác $ABH$ ta có: $\frac{AH}{AB}=\cos A=\cos 60^0=\frac{1}{2}$

$\Rightarrow AH=AB.\frac{1}{2}=2,5$ (cm)

$\frac{BH}{AB}=\sin A=\sin 60^0=\frac{\sqrt{3}}{2}$

$\Rightarrow BH=\frac{5\sqrt{3}}{2}$ (cm)

$CH=AC-AH=8-2,5=5,5$ (cm)

Áp dụng định lý Pitago cho tam giác $BHC$

$BC=\sqrt{BH^2+CH^2}=\sqrt{(\frac{5\sqrt{3}}{2})^2+5,5^2}=7$ (cm)

 

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Hình vẽ:

11 tháng 10 2023

Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

=>\(8^2+12^2-BC^2=2\cdot8\cdot12\cdot\dfrac{1}{2}\)

=>\(BC^2=64+144-96=64+48=112\)

=>\(BC=4\sqrt{7}\left(cm\right)\)

9 tháng 6 2019

giúp vs ạ