K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2020

Ta có: \(AC=BC\cdot\sin B=10\cdot\frac{3}{4}=7,5\left(cm\right)\)

\(\Rightarrow AB=\sqrt{BC^2-CA^2}=\sqrt{100-\frac{225}{4}}=\frac{5\sqrt{7}}{2}\left(cm\right)\)

Từ đó ta tính được:

\(\widehat{B}=49^0\) ; \(\sin C=\frac{AB}{BC}=\frac{\sqrt{7}}{4}\) \(\Rightarrow\widehat{C}=41^0\)

Vậy \(\hept{\begin{cases}AB=\frac{5\sqrt{7}}{2}\left(cm\right)\\AC=7,5\left(cm\right)\end{cases}}\) và \(\hept{\begin{cases}\widehat{B}=49^0\\\widehat{C}=41^0\end{cases}}\) (số đo góc chỉ xấp xỉ)

11 tháng 10 2020

cho tam giác ABC, góc A =90 độ, AB=12cm

CosB=\(\frac{3}{5}\). Tính AC, BC, góc B, góc C

9 tháng 10 2016

a. Ta có: AB2 + AC2 = 212 + 282 = 1225

          BC2 = 352 = 1225

=> BC2 = AB2 + AC2

=> Tam giác ABC là tam giác vuông (Định lý Pytago đảo)

Diện tích tam giác ABC  

\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.21.28=294\left(cm^2\right)\) 

b. \(sinB=\frac{AC}{BC}=\frac{28}{35}=\frac{4}{5}\)

    \(sinC=\frac{AB}{BC}=\frac{21}{35}=\frac{3}{5}\) 

c. Ta có: \(\frac{BD}{DC}=\frac{AB}{AC}=\frac{21}{28}=\frac{3}{4}\)\(\)

=> 4BD = 3DC

<=> 4BD = 3(BC - BD)

<=> 7BD = 3BC

<=> 7BD = 3 . 35

=> BD = 15 (cm)

=> DC = 20 (cm)

26 tháng 3 2020

tại sao BD bằng 15 vậy

Bạn có thể giải thích cho mình hông

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

a: Xét ΔABC có 

\(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH\cdot20=12\cdot16=192\)

hay AH=9,6(cm)

12 tháng 9 2017

A B C H

Câu a :

Ta có :

\(21^2+28^2=35^2\) ( py - ta - go )

\(\Rightarrow ABC\) vuông tại A .

Câu b :

\(sinB=\dfrac{AC}{BC}=\dfrac{28}{35}=\dfrac{4}{5}=0^048^'0^"\)

\(\sin C=\dfrac{AB}{BC}=\dfrac{25}{35}=\dfrac{5}{7}=0^042^'51,43^"\)

6 tháng 8 2019

Tự vẽ hình 

Kẻ BH \(\perp\)AC và \(CK\perp\)AB

Tam giác AKC vuông tại K

=>CK=bsinA (1)

Tam giác BKC vuông tại K 

=>CK=asinB  (2)

Từ (1) (2)=>bsinA=asinB

<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)

Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)

Vậy ....

a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)

nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)

hay BC=3AC

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(3\cdot AC\right)^2-AC^2=4^2=16\)

\(\Leftrightarrow8\cdot AC^2=16\)

\(\Leftrightarrow AC^2=2\)

\(\Leftrightarrow AC=\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow BC=3\sqrt{2}\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH=\dfrac{4\cdot\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}\left(cm\right)\)

b: Ta có: ΔABC vuông tại A

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên \(AM=\dfrac{BC}{2}=\dfrac{3\sqrt{2}}{2}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔAHM vuông tại H, ta được:

\(AM^2=AH^2+HM^2\)

\(\Leftrightarrow HM^2=\left(\dfrac{3\sqrt{2}}{2}\right)^2-\left(\dfrac{4}{3}\right)^2=\dfrac{49}{18}\)

hay \(HM=\dfrac{7\sqrt{2}}{6}\left(cm\right)\)

Xét ΔMAH vuông tại H có 

\(\cos\widehat{MAH}=\dfrac{HM}{AM}\)

\(=\dfrac{7\sqrt{2}}{6}:\dfrac{3\sqrt{2}}{2}=\dfrac{7}{9}\)

12 tháng 8 2016

tập hợp mẹ Lê Nguyên Hạo

90;89;87;.......