Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(AC=BC\cdot\sin B=10\cdot\frac{3}{4}=7,5\left(cm\right)\)
\(\Rightarrow AB=\sqrt{BC^2-CA^2}=\sqrt{100-\frac{225}{4}}=\frac{5\sqrt{7}}{2}\left(cm\right)\)
Từ đó ta tính được:
\(\widehat{B}=49^0\) ; \(\sin C=\frac{AB}{BC}=\frac{\sqrt{7}}{4}\) \(\Rightarrow\widehat{C}=41^0\)
Vậy \(\hept{\begin{cases}AB=\frac{5\sqrt{7}}{2}\left(cm\right)\\AC=7,5\left(cm\right)\end{cases}}\) và \(\hept{\begin{cases}\widehat{B}=49^0\\\widehat{C}=41^0\end{cases}}\) (số đo góc chỉ xấp xỉ)
cho tam giác ABC, góc A =90 độ, AB=12cm
CosB=\(\frac{3}{5}\). Tính AC, BC, góc B, góc C
a. Ta có: AB2 + AC2 = 212 + 282 = 1225
BC2 = 352 = 1225
=> BC2 = AB2 + AC2
=> Tam giác ABC là tam giác vuông (Định lý Pytago đảo)
Diện tích tam giác ABC
\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.21.28=294\left(cm^2\right)\)
b. \(sinB=\frac{AC}{BC}=\frac{28}{35}=\frac{4}{5}\)
\(sinC=\frac{AB}{BC}=\frac{21}{35}=\frac{3}{5}\)
c. Ta có: \(\frac{BD}{DC}=\frac{AB}{AC}=\frac{21}{28}=\frac{3}{4}\)\(\)
=> 4BD = 3DC
<=> 4BD = 3(BC - BD)
<=> 7BD = 3BC
<=> 7BD = 3 . 35
=> BD = 15 (cm)
=> DC = 20 (cm)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB\cdot AC=AH\cdot BC\)
\(\Leftrightarrow AH\cdot20=12\cdot16=192\)
hay AH=9,6(cm)
Câu a :
Ta có :
\(21^2+28^2=35^2\) ( py - ta - go )
\(\Rightarrow ABC\) vuông tại A .
Câu b :
\(sinB=\dfrac{AC}{BC}=\dfrac{28}{35}=\dfrac{4}{5}=0^048^'0^"\)
\(\sin C=\dfrac{AB}{BC}=\dfrac{25}{35}=\dfrac{5}{7}=0^042^'51,43^"\)
Tự vẽ hình
Kẻ BH \(\perp\)AC và \(CK\perp\)AB
Tam giác AKC vuông tại K
=>CK=bsinA (1)
Tam giác BKC vuông tại K
=>CK=asinB (2)
Từ (1) (2)=>bsinA=asinB
<=>\(\frac{a}{sinA}=\frac{b}{sinB}\)
Chứng minh tương tự ta có :\(\frac{a}{sinA}=\frac{c}{sinC}\)
Vậy ....
a: Ta có: \(\sin\widehat{B}=\dfrac{1}{3}\)
nên \(\dfrac{AC}{BC}=\dfrac{1}{3}\)
hay BC=3AC
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\left(3\cdot AC\right)^2-AC^2=4^2=16\)
\(\Leftrightarrow8\cdot AC^2=16\)
\(\Leftrightarrow AC^2=2\)
\(\Leftrightarrow AC=\sqrt{2}\left(cm\right)\)
\(\Leftrightarrow BC=3\sqrt{2}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH=\dfrac{4\cdot\sqrt{2}}{3\sqrt{2}}=\dfrac{4}{3}\left(cm\right)\)
b: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}=\dfrac{3\sqrt{2}}{2}\left(cm\right)\)
Áp dụng định lí Pytago vào ΔAHM vuông tại H, ta được:
\(AM^2=AH^2+HM^2\)
\(\Leftrightarrow HM^2=\left(\dfrac{3\sqrt{2}}{2}\right)^2-\left(\dfrac{4}{3}\right)^2=\dfrac{49}{18}\)
hay \(HM=\dfrac{7\sqrt{2}}{6}\left(cm\right)\)
Xét ΔMAH vuông tại H có
\(\cos\widehat{MAH}=\dfrac{HM}{AM}\)
\(=\dfrac{7\sqrt{2}}{6}:\dfrac{3\sqrt{2}}{2}=\dfrac{7}{9}\)