K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Lời giải:

Ta luôn có \(B,G,M,H\) thẳng hàng.

Vì $H$ đối xứng với $B$ qua $G$ nên $BG=GH$; mà theo tính chất trọng tâm tam giác thì \(GM=\frac{1}{2}BG\) \(\Rightarrow GM=\frac{1}{2}GH\). Do đó $M$ là trung điểm của $GH$

\(\Rightarrow \overrightarrow{MH}=\overrightarrow{GM}\) (1)

Ta có:

\(\left\{\begin{matrix} \overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{AM}\\ \overrightarrow{GM}=\overrightarrow{GC}+\overrightarrow{CM}\end{matrix}\right.\Rightarrow 2\overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{GC}+(\overrightarrow{AM}+\overrightarrow{CM})\)

\(\overrightarrow{AM}+\overrightarrow{CM}=0\) do $M$ là trung điểm $AC$

\(\Rightarrow 2\overrightarrow{GM}=\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{GA}+\overrightarrow{GA}+\overrightarrow{AC}=2\overrightarrow{GA}+\overrightarrow{AC}\)

\(\Leftrightarrow 2\overrightarrow{GM}=2(\overrightarrow {GB}+\overrightarrow{BA})+\overrightarrow{AC}=2\overrightarrow{GB}+\overrightarrow{AC}-2\overrightarrow{AB}\)

\(MG=\frac{1}{2}BG\) (cmt) do đó \(\overrightarrow{GM}=\frac{1}{2}\overrightarrow{BG}=-\frac{1}{2}\overrightarrow{GB}\)

\(\Rightarrow 2\overrightarrow {GM}=-4\overrightarrow{GM}+\overrightarrow{AC}-2\overrightarrow{AB}\)

\(\Leftrightarrow 6\overrightarrow{GM}=\overrightarrow{AC}-2\overrightarrow{AB}\Leftrightarrow \overrightarrow{GM}=\frac{1}{6}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\) (2)

Từ \((1),(2)\Rightarrow \overrightarrow{MH}=\frac{1}{6}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)

NV
23 tháng 8 2020

H đối xứng B qua G \(\Leftrightarrow\overrightarrow{GH}=\overrightarrow{BG}\)

\(\overrightarrow{MH}=\overrightarrow{MG}+\overrightarrow{GH}=-\frac{1}{3}\overrightarrow{AM}+\overrightarrow{BG}=-\frac{1}{3}\left(\frac{1}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}\right)+\overrightarrow{BA}+\overrightarrow{AG}\)

\(=-\frac{1}{6}\overrightarrow{AB}-\frac{1}{6}\overrightarrow{AC}-\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AB}+\frac{1}{3}\overrightarrow{AC}\)

\(=-\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{AC}\Rightarrow\left\{{}\begin{matrix}m=-\frac{5}{6}\\n=\frac{1}{6}\end{matrix}\right.\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

16 tháng 9 2018

khong co de bai sao lam dc

16 tháng 9 2018

- bạn này ngáo cmnr

NV
5 tháng 1 2021

H đối xứng B qua G \(\Rightarrow\overrightarrow{BH}=2\overrightarrow{BG}=2\left(\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\right)=-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{BH}=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{1}{3}\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}\)

\(\overrightarrow{CH}=\overrightarrow{CA}+\overrightarrow{AH}=-\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)

\(\overrightarrow{MH}=\overrightarrow{MA}+\overrightarrow{AH}=-\dfrac{1}{2}\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AC}+\dfrac{2}{3}\overrightarrow{AC}-\dfrac{1}{3}\overrightarrow{AB}\)

\(=-\dfrac{5}{6}\overrightarrow{AB}+\dfrac{1}{6}\overrightarrow{AC}\)