K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

Giả sử \(\Delta\)DEF đều 

\(\Rightarrow\widehat{EDF}=60^0\)

Lại có ^DHC = 900 (gt) nên ^BCK = 300

Mà CK là phân giác của ^C nên \(\widehat{KCA}=30^0\)và ^ACB = 600

Kết hợp với \(\widehat{IEC}=60^0\)(đối đỉnh với ^DEF = 600)

=> \(\widehat{EIC}=90^0\)

\(\Delta ABC\)có BI là trung tuyến đồng thời là đường cao nên \(\Delta ABC\)cân tại B

Mà ^ACB = 600 nên \(\Delta ABC\) đều

=> Ba đường AH, BI, CK đồng quy

=> D,E,F trùng nhau

Vậy DEF không thể là tam giác đều (đpcm)

13 tháng 1 2020

giúp mình nha

19 tháng 2 2017

hình bạn tự vẽ nhé

gọi giao điểm của AH và BE là I

gọi giao điểm của KC và BE là L

phần còn lại tối mk giải mk đi học đã 

10 tháng 3 2019

( bạn tự vẽ hình)

a, xét tam giác ABE và tam giác ACE có:

AE chung

AB=AC (gt)

góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)

=> tam giác ABE=tam giác ACE

b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)

=> góc BEA=góc CEA ( 2 góc tương ứng)

mà 2 góc này kề bù

=> góc BEA=góc CEA= 180 độ : 2= 90 độ 

=> AE vuông góc với BC (2)

từ (1) và (2) ta có AE là đường trung trực của BC.

22 tháng 2 2020

a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ 
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.