Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nhé
gọi giao điểm của AH và BE là I
gọi giao điểm của KC và BE là L
phần còn lại tối mk giải mk đi học đã
( bạn tự vẽ hình)
a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.
a, xét tam giác ABE và tam giác ACE có:
AE chung
AB=AC (gt)
góc BAE=góc CAE( vì AE là tia phân giác của góc BAC)
=> tam giác ABE=tam giác ACE
b, vì tam giác ABE=tam giác ACE( cmt)=> BE=CE( 2 cạnh tương ứng)(1)
=> góc BEA=góc CEA ( 2 góc tương ứng)
mà 2 góc này kề bù
=> góc BEA=góc CEA= 180 độ : 2= 90 độ
=> AE vuông góc với BC (2)
từ (1) và (2) ta có AE là đường trung trực của BC.
Giả sử \(\Delta\)DEF đều
\(\Rightarrow\widehat{EDF}=60^0\)
Lại có ^DHC = 900 (gt) nên ^BCK = 300
Mà CK là phân giác của ^C nên \(\widehat{KCA}=30^0\)và ^ACB = 600
Kết hợp với \(\widehat{IEC}=60^0\)(đối đỉnh với ^DEF = 600)
=> \(\widehat{EIC}=90^0\)
\(\Delta ABC\)có BI là trung tuyến đồng thời là đường cao nên \(\Delta ABC\)cân tại B
Mà ^ACB = 600 nên \(\Delta ABC\) đều
=> Ba đường AH, BI, CK đồng quy
=> D,E,F trùng nhau
Vậy DEF không thể là tam giác đều (đpcm)
giúp mình nha