Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a = 60cm
p = 160/2 = 80cm
p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)
Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN
Áp dụng bđt Cosin, ta có:
\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)
=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)
=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400
=> S <= 1200 (\(cm^2\))
Dấu "=" xảy ra
<=> \(p-b\) = \(p-c\)
<=> b = c
Thay b = c vào (1), ta được:
p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)
=> đpcm
Vì a,b,c là độ dài 3 cạnh tam giác nên
\(\hept{\begin{cases}a+b-c>0\\b+c-a>0\\c+a-b>0\end{cases}}\)
Ta có : \(\left(p-a\right)\left(p-b\right)\left(p-c\right)=\left(\frac{a+b+c}{2}-a\right)\left(\frac{a+b+c}{2}-b\right)\left(\frac{a+b+c}{2}-c\right)\)
\(=\frac{b+c-a}{2}.\frac{a+c-b}{2}.\frac{a+b-c}{2}=\frac{\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}{8}\)
\(=\frac{\sqrt{\left(a+b-c\right)\left(b+c-a\right)}.\sqrt{\left(b+c-a\right)\left(c+a-b\right)}.\sqrt{\left(a+b-c\right)\left(c+a-b\right)}}{8}\)
\(\le\frac{\frac{a+b-c+b+c-a}{2}.\frac{b+c-a+c+a-b}{2}.\frac{a+b-c+c+a-b}{2}}{8}\)
\(=\frac{\frac{2b}{2}.\frac{2c}{2}.\frac{2a}{2}}{8}=\frac{abc}{8}\)
Dấu "=" <=> tam giác đó đều
1/ Với mấy bài dạng này, u cứ tách theo kiểu coi x (hoặc y) là biến, cái còn lại là tham số.
\(A=2x^2+9y^2-6xy-6x-12y+2037\)
\(2A=4x^2-12x\left(y+1\right)+18y^2-24y+4074\)
\(2A=\left(2x\right)^2-2.2x.3\left(y+1\right)+9\left(y+1\right)^2+9y^2-42y+4065\)
\(2A=\left[2x-3\left(y+1\right)\right]^2+\left(3y-7\right)^2+4016\ge4016\) nên \(A\ge2008\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}2x-3\left(y+1\right)=0\\3y-7=0\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)
bài 28
\(P=\frac{\left[a^2-\left(b+c\right)^2\right]\left(a+b-c\right)}{\left(a+b+c\right)\left[\left(a-c\right)^2-b^2\right]}\)
=>\(P=\frac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a-c-b\right)\left(a-c+b\right)}\)
=>\(P=1\)
Bài 30 phải là xy+y+x=3.
Ta có: xy+y+x=3 => (x+1)(y+1)=4(1)
yz+y+z=8 => (y+1)(z+1)=9(2)
zx+x+z=15 => (x+1)(z+1)=16(3)
Nhân (1), (2) và (3) theo vế, ta có:
[(x+1)(y+1)(z+1)]2=576
=> (x+1)(y+1)(z+1)=24(I) hoặc (x+1)(y+1)(z+1)=-24(II)
Lần lượt thay (1),(2),(3) vào (I),(II), tính x,y,z.
Kết quả: P=43/6 hoặc P=-79/6
Ta có:
\(\left(p-a\right)\left(p-b\right)\le\dfrac{\left(p-a+p-b\right)^2}{4}=\dfrac{c^2}{4}\)
Tương tự ta có: \(\left\{{}\begin{matrix}\left(p-b\right)\left(p-c\right)\le\dfrac{a^2}{4}\\\left(p-c\right)\left(p-a\right)\le\dfrac{b^2}{4}\end{matrix}\right.\)
Nhân 3 cái vế theo vế được
\(\left[\left(p-a\right)\left(p-b\right)\left(p-c\right)\right]^2\le\dfrac{\left(abc\right)^2}{8^2}\)
\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\dfrac{abc}{8}\)
Thế vô bài toán ta được:
\(N=\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{abc}\le\dfrac{\dfrac{abc}{8}}{abc}=\dfrac{1}{8}\)