Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích hình vuông cạnh c là \(S=c^2\)
Tổng diện tích hai hình chữ nhật là \(S_1=2ab\)
Xét tg vuông có \(c^2=a^2+b^2\)
Áp dụng cosi có
\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\frac{a^2+b^2+2ab}{4}\ge ab\Rightarrow a^2+b^2\ge2ab\) Dấu = xảy ra khi \(a=b\)
\(\Rightarrow S\ge S_1\left(dpcm\right)\)
\(S=S_1\) Khi a=b => tg ban đầu phải là tg vuông cân
Theo công thức Heron ta có :
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) \(\) (\(p\)=\(\frac{a+b+c}{2}=\frac{P}{2}\))
=>\(S^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right).\)
=>\(16S^2=\left(2.p\right)\left[2\left(p-a\right)\right]\left[2\left(p-b\right)\right]\left[2\left(p-c\right)\right].\)
<=>\(16S^2=P.\left(P-2a\right)\left(P-2b\right)\left(P-2c\right).\left(đpcm\right)\)
+) cách chứng minh định lý Heron
Gọi a,b,c lần lượt là 3 cạnh của tam giác và A,B,C lần lượt là các góc đối diện của các cạnh .theo hệ quả định lí cô-si ta có
\(\cos\left(C\right)=\frac{a^2+b^2-c^2}{2ab}=>\sin\left(C\right)=\sqrt{1-\cos^2}=\frac{\sqrt{4a^2b^2-\left(a^2+b^2-c^2\right)^2}}{2ab}\)
ta có diện tích tam giác ABC
\(S=\frac{ab\sin\left(C\right)}{2}=\frac{1}{4}\sqrt{4a^2b^2\left(a^2+b^2-c^2\right)^2}\)
\(=\frac{1}{4}\left(2ab-\left(a^2+b^2-c^2\right)\right)\left(2ab+\left(a^2+b^2-c^2\right)\right)\)
\(=\frac{1}{4}\left(c^2-\left(a-b\right)^2\right)\left(\left(a+b\right)^2-c^2\right)\)
\(=\frac{1}{4}\left(c-\left(a-b\right)\right)\left(c+\left(a-b\right)\right)\left(\left(a+b\right)-c\right)\left(\left(a+b\right)+c\right)\)
\(=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)
Bài2 ,
Ta có\(sin_P^2+cos_P^2=1\)
mà \(2\left(sin_P^2+cos_P^2\right)\ge\left(sin_P+cos_p\right)^2\Rightarrow\left(sin_p+cos_p\right)\le\sqrt{2}\)
^_^
a = 60cm
p = 160/2 = 80cm
p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)
Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN
Áp dụng bđt Cosin, ta có:
\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)
=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)
=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400
=> S <= 1200 (\(cm^2\))
Dấu "=" xảy ra
<=> \(p-b\) = \(p-c\)
<=> b = c
Thay b = c vào (1), ta được:
p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)
=> đpcm