K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

A B C G M P N

a) tg ABC đều 

mà G là trọng tâm
=> AG,CG,BG là dg pg
thì có các tg AGB, AGC,BGC cân

=> AG=CG=BG

b) tg APN cân tại A(tự cm)

mà góc A(lớn ) = 60độ

=> tg APN đều => góc ANP=góc ACB

=>PN//BC(...)

CMT vs các tg MNC,PMB

c)tg MNC=tgPMB=tg PNA(M,N,P lần lượt là tđ của BC,AC,AB)

=> MN=PM=PN

=> tg PMN đều

a) xét tam giác ABD và tam giác BMD có:

       góc B1 = góc B2 (gt)

       BD chung

        góc A = góc M = 900

=> tam giác ABD = tam giác BMD (g.c.c)

=> AB = BM (cạnh tương ứng)

=> tam giác ABM cân tại B

b) bó tay

4 tháng 6 2016

cảm ơn bạn nha

a: Xét ΔBEC và ΔCDB có 

BE=CD

\(\widehat{EBC}=\widehat{DCB}\)

BC chung

Do đó: ΔBEC=ΔCDB

Suy ra: CE=DB

b: Xét ΔGBC có \(\widehat{GCB}=\widehat{GBC}\)

nên ΔGBC cân tại G

=>GB=GC

Ta có: GB+GD=BD

GE+GC=CE

mà BD=CE

và GB=GC

nên GD=GE

hay ΔGDE cân tại G

c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)

Ta có: GB=GC

nên G nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,G,M thẳng hàng

15 tháng 5 2016

1.gọi giao của BD và CE là O

ta có: OB=2/3 BD=> OB=2/3  x 9=6

ta có: OC=2/3 EC=> OC=2/3  x12=8

ta có:\(OC^2+OB^2=6^2+8^2=36+64=100\)

\(BC^2=10^2=100\)

=> tam giác OBC vuông tại O=> BD_|_CE tại O

1.gọi giao của BD và CE là O

ta có: OB=2/3 BD=> OB=2/3  x 9=6

ta có: OC=2/3 EC=> OC=2/3  x12=8

ta có:$OC^2+OB^2=6^2+8^2=36+64=100$OC2+OB2=62+82=36+64=100

$BC^2=10^2=100$BC2=102=100

=> tam giác OBC vuông tại O=> BD_|_CE tại O

7 tháng 3 2020

a) tự xét tam giác zuông ABD = tam giác zuông MBD( cạnh huyền - góc nhọn )

=>AB=AM

=> Tam giác ABM cân 

b)Tự xét tam giácAEC= ENC 

=>CN=CA

khi đó AB+AC=BM+CN

=> BM+MC+MN=BC+MN

=>MN=AB+BC-BC

c) tam giác AMB cân

=> góc AMB =\(\frac{180^0-\widehat{ABC}}{2}=90^0-\frac{\widehat{ABC}}{2}\)

từ ANC cân ở N ( tự cm)

=> góc ANB =180-góc ACB /2=90 độ -ACB/2

trong tám giác AMN có

\(\widehat{MAN}=180^0-\widehat{AMB}-\widehat{ANC=180^0-\left(90^0-\frac{\widehat{ABC}}{2}\right)-\left(90^0-\frac{\widehat{ACB}}{2}\right)}\)

=>\(\widehat{\widehat{MAN}=\frac{\widehat{ABC}}{2}+\frac{ACB}{2}=\frac{90}{2}=45^0}\)

zì tam giác ABC zuông tại A nên góc ABC +ACB=90 độ 

d) zì tam giac AMB cân ở B nên đường phân giác BD đồng thời là đường cao

=>BD\(\perp AM\)hay \(GI\perp AK\)

Mặt khác tam giác ANC cân ở C ( cái này cậu tự cm ở trên mình bảo ấy )

do đó đường phân giác CE đồng thời là đường cao

=>\(CE\perp AN=>KI\perp AG\)

trong tam giác AKG có 2 đường cao xuất phát từ G , K cắt nhau tại I

=> I là trực tâm của tam giác AKG

=>\(AI\perp GK\)ở H nên góc AHG=90 độ