Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Mình sử dụng luôn 3 đường trung tuyến của câu b nha bạn
Vì G là trọng tâm của \(\Delta ABC\) nên
\(GA=\frac{2}{3}AM;GB=\frac{2}{3}BN;GC=\frac{2}{3}CP\left(1\right)\)
Vì \(\Delta ABC\) đều nên ba đường trung tuyến ứng với ba cạnh BC, CA, AB bằng nhau
=> AM = BN = CP (2)
Từ (1), (2) => GA = GB = GC
b) Xét \(\Delta ABC\) có : PA = PB ; NA = NC
\(\Rightarrow\) PN là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\) PN // BC
Xét \(\Delta ABC\) có : PA = PB ; MB = MC
=> MP là đường trung bình của \(\Delta ABC\)
=> MP // AC
c) Vì \(\Delta ABC\) đều mà AM là tung tuyến => AM là phân giác
=> \(\widehat{BAM}=\widehat{MAC}=\frac{60^o}{2}=30^o\)
Có AN = MN => \(\Delta AMN\) cân tại N
=> \(\widehat{NMA}=\widehat{NAM}=30^o\) (1)
Có MP = PA => \(\Delta AMP\) cân tại P
\(\Rightarrow\widehat{PAM}=\widehat{PMA}=\frac{60^o}{2}=30^o\) (2)
Xét \(\Delta ABM\) vuông tại M có MP là đường trung tuyến ứng với cạnh huyền AB
=> MP = PA = PB
Xét \(\Delta AMC\) vuông tại M có MN là đường trung tuyến ứng với cạnh huyền AC
=> MN = NA = NC
mà NA = CP
=> PM = MN => \(\Delta PMN\) cân tại M (3)
Từ (1) và (2) và (3) => \(\Delta PMN\) đều
bn có chép thiếu ko z, G là trọng tâm n phải xác định thêm 1 trung tuyến nữa chứ
A B C M N P I H O
a) MP // AC => ^MPB=^CAB; ^PMB=^ACB. Mà ^CAB=^ACB=600
=> ^MPB=^PMB=600 => Tam giác BPM là tam giác đều (đpcm).
b) Tam giác BPM là tam giác đều (cmt) => PM=BP
Ta có: PM//AN; M//AP => PM=AN (Tính chất đoạn chắn)
=> BP=AN.
Tam giác ABC đều và O là trọng tâm nên ta có: ^OBA=^OAC=300 hay ^OBP=^OAN và OB=OA
Xét tam giác OAN và tam giác OBP: BP=AN; OA=OB; ^OAN=^OBP
=> Tam giác OAN= Tam giác OBP (đpcm)
c) Tam giác AIP=Tam giác MIN (g.c.g) => IP=IN hay I là trung điểm của NP
Tam giác OAN=Tam giác OBP (cmt) => ON=OP => O nằm trên trung trực của NP (1)
HP=HN => H nằm trên trung trực của NP (2)
Từ (1) và (2) kết hợp với I là trung điểm của NP => H;I;O thẳng hàng (đpcm).
a) Mk cm trường hợp = nhau c.c.c nhé ! trường hợp c.g.c cũng có thể làm đó bn
Do tam giác ABC cân tại A => AB=AC
\(\widehat{B}=\widehat{C}\)
Do AM là đường trung tuyến ứng vs cạnh BC => BM=CM
Xét tam giác ABM và tam giác ACM có :
AB = AC ( cm trên )
AM là cạnh chung
BM=CM ( cm trên )
nên tam giác ABM = tam giác ACM
b) Do tam giác ABC cân tại A và có AM là đường trung tuyến => AM cũng là đường trung trực của tam giác ABC ( theo t/c tam giác cân )
( hoặc bn cũng có thể cm cách khác nhưng dài hơn , cách này ngắn nhất đó ! )
\(a)\)
\(\text{Ta có}:\)
\(\Delta ABC\)\(\text{vuông tại}\)\(A\)
\(\rightarrow BC^2=AB^2+AC^2\)
\(\rightarrow AC^2=BC^2-AB^2\)
\(\rightarrow AC^2=15^2-9^2\)
\(\rightarrow AC^2=144\)
\(\rightarrow AC=12\)
\(\rightarrow AB< AC< BC\)
\(\rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)
\(\text{Ta có:}\)
\(AB\perp AC\rightarrow\widehat{BAC}=\widehat{EAC}\)
\(\rightarrow AB=AE\rightarrow A\)\(\text{là trung điểm}\)\(BE\)
\(b)\)
\(\text{Theo phần a), ta có:}\)\(AB=AE\rightarrow A\text{ }\)\(\text{là trung điểm}\)\(BE\)
\(\rightarrow CA\)\(\text{là trung tuyến}\)\(\Delta CBE\)
\(\text{Mà}\)\(BH\)\(\text{là trung tuyến}\)\(\Delta BCE\)\(,\)\(BH\text{∩}\text{ }CA=M\)
\(\rightarrow M\text{ }\)\(\text{là trọng tâm}\)\(\Delta BCE\)
\(\rightarrow CM=\frac{2}{3}CA\)
\(\rightarrow CM=8\)
\(c)\)
\(\text{Theo phần a)}\)\(\rightarrow\widehat{ECA}=\widehat{ACB}\)
\(\rightarrow\widehat{CEA}=\widehat{CBA}\)
\(\text{Do}\)\(AK//CE\rightarrow\widehat{KAB}=\widehat{AEC}=\widehat{CBA}=\widehat{KBA}\rightarrow KB=KA\)
\(\widehat{KAC}=\widehat{ECA}=\widehat{ACB}=\widehat{ACK}\rightarrow KA=KC\)
\(\rightarrow KB=KC\rightarrow K\)\(\text{là trung điểm}\)\(BC\)
\(\text{Mà}\)\(M\)\(\text{là trọng tâm}\)\(\Delta CBE\rightarrow E,MK\)\(\text{thẳng hàng}\)
A B C G M P N
a) tg ABC đều
mà G là trọng tâm
=> AG,CG,BG là dg pg
thì có các tg AGB, AGC,BGC cân
=> AG=CG=BG
b) tg APN cân tại A(tự cm)
mà góc A(lớn ) = 60độ
=> tg APN đều => góc ANP=góc ACB
=>PN//BC(...)
CMT vs các tg MNC,PMB
c)tg MNC=tgPMB=tg PNA(M,N,P lần lượt là tđ của BC,AC,AB)
=> MN=PM=PN
=> tg PMN đều