K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

b: góc EDH=góc BAF

góc FDH=góc ECB

mà góc BAF=góc ECB

nên góc EDH=góc FDH

=>DH là phân giác của góc EDF

a: Xét tứ giác ADHE có

góc AdH+góc AEH=180 độ

=>ADHElà tứ giác nội tiếp

I là trung điểm của AH

b: Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiếp

góc EDB=góc BAF

góc FDB=góc ECB
mà góc BAF=góc ECB

nên góc EDB=góc FDB

=>DB là phân giác của góc EDF

26 tháng 1 2023

và KH/HF=DK/DF đc ko bạn câu b)

a: Xét (O) có

ΔBFC nội tiếp

BC là đường kính

Do đó: ΔBFC vuông tại F

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có

BE,CF là đường cao

BE cắt CF tại H

Do đó: AH vuông góc với BC tại D

b:

Xét tứ giác CDFA có góc CDA=góc CFA=90 độ

nên CDFA là tứ giác nội tiếp

=>góc BFD=góc BCA

Xét tứ giác BFEC có góc BFC=góc BEC=90 độ

nên BFEC là tứ giác nội tiếp

=>góc AFE=góc ACB

Ta có: góc COE=180 độ-2 góc C

góc EFD=180 độ-góc AFE-góc BFD

=180 độ-2 góc C

=>góc COE=góc EFD

=>DOEF là tứ giác nội tiếp

30 tháng 9 2021

A B D E K O C d1 d2 H I G

a/

\(d_1;d_2\) là tiếp tuyến với đường tròn tại A và B \(\Rightarrow d_1\perp AB;d_2\perp AB\) => \(d_1\)//\(d_2\)

Xét tg vuông ABK có

\(\widehat{ACB}=90^o\) (góc nội tiếp chắn nửa đường tròn)

\(\Rightarrow AK^2=KC.KB\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

b/ 

Ta có 

DA=DC (2 tiếp tuyến của 1 đường tròn cùng xuất phát từ 1 điểm thì khoảng cách từ điểm đó đến 2 tiếp điểm bằng nhau) (1)

EC=EB (lý do như trên) => tg EBC cân tại E\(\Rightarrow\widehat{ECB}=\widehat{KBE}\) (2 góc ở đáy của tg cân) (*)

\(\widehat{KBE}=\widehat{AKB}\) (góc so le trong) (**)

\(\widehat{KCD}=\widehat{ECB}\) (Góc đối đỉnh) (***)

Từ (*) (**) và (***) \(\Rightarrow\widehat{AKB}=\widehat{KCD}\) => tg DCK cân tại D => DC=DK (2)

Từ (1) và (2) => DA=DK nên K là trung điểm của AK

c/ Gọi I là giao của CH với BD

Ta có 

\(CH\perp AB;d_1\perp AB\) => CH//\(d_1\)

\(\Rightarrow\frac{IC}{DK}=\frac{BC}{BK}=\frac{BH}{BA}=\frac{IH}{DA}\) (Talet trong tam giác)

Mà DK=DA => IC=IH => BD đi qua trung điểm I của CH

d/

30 tháng 9 2021

câu a ý số 2 bạn còn cách nào khác ko? Tại mk chx hc góc nội tiếp chắn nửa đường tròn

23 tháng 4 2018

a, HS tự chứng minh

b, HS tự chứng minh

c, DAEH vuông nên ta có: KE = KA = 1 2 AH

=> DAKE cân tại K

=>  K A E ^ = K E A ^

DEOC cân  ở O =>  O C E ^ = O E C ^

H là trực tâm => AH  ^ BC

Có  A E K ^ + O E C ^ = H A C ^ + A C O ^ = 90 0

(K tâm ngoại tiếp) => OE ^ KE

d, HS tự làm