K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2022

A B C E H K F I M N

a/ H và K cùng nhìn BE dưới 1 góc vuông nên H và K cùng nằm trên đường tròn đường kính BE

=> BHEK là tứ giác nội tiếp

b/

Xét tg vuông ABE có

\(BE^2=BH.BA\) (Trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông trên cạnh huyền với cạnh huyền)

Xét tg vuông CBE có

\(BE^2=BK.BC\) (Lý do như trên)

\(\Rightarrow BH.BA=BK.BC\) (đpcm)

c/

Gọi M là giao của BE và CF

Nối H với K cắt EF tại I' và cắt CF tại N

Ta có E và F cùng nhìn BC dưới 1 góc vuông nên E và F cùng nằm trên đường tròn đường kính BC

=> BCEF là tứ giác nội tiếp

\(\Rightarrow\widehat{EBC}=\widehat{EFC}\) (góc nội tiếp cùng chắn cung EC)

Ta có

\(EH\perp AB;CF\perp AB\) => EH//CF \(\Rightarrow\widehat{EFC}=\widehat{HEF}\) (góc so le trong)

\(\Rightarrow\widehat{EBC}=\widehat{HEF}\)

Xét tg vuông HEF và tg vuông EBC có

\(\widehat{EBC}=\widehat{HEF}\) (cmt) \(\Rightarrow\widehat{ECB}=\widehat{HFE}\) 

Xét tg vuông MEC có

\(\widehat{ECF}=\widehat{MEN}\) (cùng phụ với \(\widehat{EMC}\) )

Ta có \(\widehat{FEB}=\widehat{FCB}\) (góc nội tiếp cùng chắn cung FB)

\(\Rightarrow\widehat{FEB}+\widehat{MEN}=\widehat{FCB}+\widehat{ECF}\Rightarrow\widehat{FEN}=\widehat{ECB}\)

Mà \(\widehat{ECB}=\widehat{HFE}\) (cmt)

\(\Rightarrow\widehat{FEN}=\widehat{HFE}\) => HF//EN (hai đường thẳng bị cắt bởi 1 đường thẳng tạo thành hai góc so le trong bằng nhau thì chúng // với nhau)

Mà HE//CF (cmt)

=> HENF là hình bình hành (tứ giác có các cặp cạnh đối // với nhau từng đôi 1 là hbh)

=> I'E = I'F (trong hbh hai đường chéo cắt nhau tại trung điểm mỗi đường)

=> I' là trung điểm của EF mà I cũng là trung điểm của EF => I trùng I'

=> H; I; K thẳng hàng

 

 

DD
26 tháng 5 2022

1) \(\widehat{BHE}=\widehat{BKE}=90^o\) nên \(H,K\) cùng nhìn \(BE\) dưới một góc vuông suy ra \(BHEK\) nội tiếp. 

2) Xét tam giác \(BEA\) vuông tại \(E\) đường cao \(EH\)

\(BH.BA=BE^2\) (hệ thức trong tam giác vuông) 

Tương tự khi xét tam giác \(BEC\) vuông tại \(E\) đường cao \(EK\) cũng có \(BK.BC=BE^2\) suy ra \(BH.BA=BK.BC\).

3) Gọi \(I'\) là giao điểm của \(HK\) và \(EF\). Ta sẽ chứng minh \(I'\) là trung điểm của \(EF\).

\(BFEC\) nội tiếp nên \(\widehat{EFC}=\widehat{EBC}\)

\(BHEK\) nội tiếp nên \(\widehat{EBK}=\widehat{EHK}\)

\(EH//CF\) nên \(\widehat{HEF}=\widehat{EFC}\)

suy ra \(\widehat{EHK}=\widehat{HEF}\) suy ra tam giác \(I'HE\) cân tại \(I'\) suy ra \(I'H=I'E\).

Từ \(\widehat{EHK}=\widehat{HEF}\) ta cũng suy ra \(\widehat{I'HF}=\widehat{I'FH}\) suy ra tam giác \(I'FH\) cân tại \(I'\) nên \(I'H=I'F\) suy ra \(I'F=I'E\) nên \(I'\) là trung điểm của \(EF\).

Suy ra \(I\) và \(I'\) trùng nhau. 

Suy ra đpcm. 

1: Xét tứ giác BHEK có \(\widehat{BHE}+\widehat{BKE}=180^0\)

nên BHEK là tứ giác nội tiếp

2: Xét ΔBEA vuông tại E có EH là đường cao

nên \(BH\cdot BA=BE^2\left(1\right)\)

Xét ΔBEC vuông tại E có EK là đường cao

nên \(BK\cdot BC=BE^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BA=BK\cdot BC\)

16 tháng 3 2021

answer-reply-image

Bạn tham khảo nhé!

1: góc ADC=góc AFC=90 độ

=>ADFC nội tiếp

9 tháng 8 2016

cho tam giác ABC vuông cân tại B.Trên cạnh BA và BC lấy hai điểm E và F sao cho BE = BF.Qua B và E kẻ đường vuông góc với AF,chúng cắt AC lần lượt ở I và K. EK cắt BC tại H
a)Chứng minh tam giác AHC cân
b)chứng minh I là trung điểm KC
c)Gọi M,N,P lần lượt là trung điểm EC,AF,EF

18 tháng 12 2019

a, HS tự chứng minh

b, HS tự chứng minh

c, HS tự chứng minh

d, ∆MIH:∆MAB

=>  M H M B = I H A B = 2 E H 2 F B = E H F B

=> ∆MHE:∆MBF

=>  M F A ^ = M E K ^  (cùng bù với hai góc bằng nhau)

=> KMEF nội tiếp =>  M E F ^ = 90 0

15 tháng 4 2021
Mình đã làm được câu 1,2,3 rồi.Nhờ mọi người giúp câu 4 nha.
13 tháng 7 2019

a)     Ta có: A I E ^ = A J E ^ = 90 0  nên tứ giác AIEJ nội tiếp.

E M C ^ = E J C ^ = 90 0  nên tứ giác CMJE nội tiếp.

Xét tam giác Δ A E C   v à   Δ I E M , có

A C E ⏜ = E M I ⏜  ( cùng chắn cung JE của đường tròn ngoại tiếp tứ giác CMJE).

E A C ⏜ = E I M ⏜  ( cùng chắn cung JE của đường tròn ngoại tiếp tứ giác AIEJ).

Do đó hai tam giác  Δ A E C   ~   Δ I E M  đồng dạng

⇒ A E E I = E C E M ⇒ E A . E M = E C . E I (đpcm)