Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có ABC = 80°
=> ABD = DBC = 40°
Mà BCE = 40°
=> DBC = BCE = 40°
Mà 2 góc này ở vị trí so le trong
=> BD//EC
Ta thấy ABC + CBE = 180°
=> CBE = 100°
Xét ∆BCE ta có :
BEC = 40°
Az // BC => \(\widehat{xAz}=\widehat{ABC}\)(đồng vị) (1)
Az // BC => \(\widehat{CAz}=\widehat{ACB}\)(so le trong) (2)
Từ (1), (2) và \(\widehat{ABC}=\widehat{ACB}\)=> \(\widehat{xAz}=\widehat{CAz}\)
=> Az là tia phân giác của góc CAx.
Vì không nhớ cách làm chi tiết nên chị viết tắt nhé.
1)
a) Ta có: góc BAD+góc CAE+góc BAC=180 độ
Mà góc BAC=90 độ nên góc BAD+ góc CAE=90 độ (1)
Vì tam giác ACE vuông tại E nên góc ACE+góc CAE=90 độ(2)
Từ (1) và (2) => góc BAD= góc ACE
Xét tam giác ABD và tam giác ACE có:
góc ADB=góc AED=90 độ
AB=AC ( vì tam giác ABC vuông cân tại A)
góc BAD=góc ACE (cmt)
=> tam giác ABD=tam giác ACE (cạnh huyền-góc nhọn)
b) Theo câu a) Tam giác ABD=tam giác ACE
=> DA=EC và BD=AE
Mà DE=DA+AE nên DE=EC+BD