K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

Az // BC => \(\widehat{xAz}=\widehat{ABC}\)(đồng vị) (1)
Az // BC => \(\widehat{CAz}=\widehat{ACB}\)(so le trong) (2)
Từ (1), (2) và \(\widehat{ABC}=\widehat{ACB}\)=> \(\widehat{xAz}=\widehat{CAz}\)
=> Az là tia phân giác của góc CAx.
Vì không nhớ cách làm chi tiết nên chị viết tắt nhé.

30 tháng 8 2020

                                                         Bài giải

A B C x z 1 1 2 3 2

Ta có : \(BC\text{ }//\text{ }Az\) nên \(\widehat{C_2}=\widehat{A_2}\) ( hai góc so le trong )

Mà \(\widehat{CAx}=\widehat{A_2}+\widehat{A_3}\) là góc ngoài tại đỉnh A của \(\Delta ABC\) nên \(\widehat{A_2}+\widehat{A_3}=\widehat{B}+\widehat{C_2}\)

lại có : \(\widehat{B}=\widehat{C_2}=\widehat{A_2}\) nên \(\widehat{A_3}=\widehat{B}=\widehat{C_2}=\widehat{A_2}\)

Vì \(\widehat{A_2}=\widehat{A_3}\) nên Az là tia phân giác \(\widehat{CAx}\)

18 tháng 7 2023

help me :(((((

10 tháng 11 2021

a) Ta có:
CD//Ax(gt)CD//Ax(gt)
⇒ ˆACD=ˆCAxACD^=CAx^ (so le trong)
ˆBAx=ˆADCBAx^=ADC^ (đồng vị)
mà ˆCAx=ˆBAx=ˆBAC2(gt)CAx^=BAx^=BAC^2(gt)
⇒ ˆBAx=ˆADC=ˆACD
nhớ tích choa mik với

10 tháng 11 2021

a) Ta có:

CD//Ax(gt)CD//Ax(gt)

⇒ ˆACD=ˆCAxACD^=CAx^ (so le trong)

ˆBAx=ˆADCBAx^=ADC^ (đồng vị)

mà ˆCAx=ˆBAx=ˆBAC2(gt)CAx^=BAx^=BAC^2(gt)

⇒ ˆBAx=ˆADC=ˆACD

nhớ tích cho mik nha

2 tháng 10 2020

a) Vì ax là tia phân giác của góc bac nên bax=xac(1)

Vì ax//cd => xac và dca là hai góc so le trong=>xac=acd (2)

Vì bax và adc là hai góc đồng vị =>bax=adc(3)

Từ (1), (2) và (3) => xab=adc=acd (đpcm)

Xin lỗi vì chỉ mới làm đc câu a nhé =))