Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMB và ΔDMC có:
MA=MD(gt)
\(\widehat{AMB}=\widehat{DMC}\left(đđ\right)\)
MB=MC(gt)
=> ΔAMB=ΔDMC(c.g.c)
b)Vì: ΔAMB=ΔDMC(cmt)
=> AB=DC ; \(\widehat{ABC}=\widehat{DCB}\)
Xét ΔABC và ΔDCB có:
BC: cạnh chung
\(\widehat{ABC}=\widehat{DCB}\left(cmt\right)\)
AB=DC(cmt)
=> ΔABC=ΔDCB(c.g.c)
=>AC=BD
\(\widehat{ACB}=\widehat{DBC}\) . Mà hai góc này ở vị trí sole trong
=>AC//BD
Vì: ΔABC=ΔDCB(cmt)
=> \(\widehat{BAC}=\widehat{CDB}=90^o\)
a) Xét tam giác AMB và tam giác DMC:
AM = DM (gt).
BM = CM (M là trung điểm của cạnh BC).
\(\widehat{AMB}=\widehat{DMC}\) (Đối đỉnh).
\(\Rightarrow\Delta AMB=\Delta DMC\left(c-g-c\right).\)
b) Xét tam giác ABD và tam giác DCA:
AB = DC \(\left(\Delta AMB=\Delta DMC\right).\)
AD chung.
\(\widehat{BAD}=\widehat{CDA}\) \(\left(\Delta AMB=\Delta DMC\right).\)
\(\Rightarrow\Delta ABD=\Delta DCA\left(c-g-c\right).\)
Xét \(\Delta ABD:AB+BD>AD.\Leftrightarrow AB+BD>2AM.\)
Mà \(BD=AC\) \(\left(\Delta ABD=\Delta DCA\right).\)
\(\Rightarrow AB+AC>2AM.\)
a) Xét tam giác ABM và tam giác DCM có
+ BM=CM ( gt)
+ Góc AMB = góc DMC ( đối đỉnh)
+ AM = DM
=> tam giác ABM = tam giác DCM ( c-g-c)
b) Vì tam giác ABM = tam giác DCM
=> góc BAM = Góc CDM ( 2 góc tương ứng )
Ta có : Góc BAM = Góc CDM ( c/m trên)
Mà góc BAM + CAM = 180độ( 2 góc kề bù ) (1)
góc CDM + BDM = 180độ ( 2 góc kề bù ) (2)
Mà góc BAM = góc CDM
Từ (1) và (2) => Góc CAM = góc BDM
Xét tam giác ACM và tam giác BDM có
+ Góc CAM = BDM ( c/m trên)
+ BM = CM ( gt)
+ góc BMD = góc AMC ( đối đỉnh )
=> Tam giác ACM = tam giác BDM ( g.c.g)
=> AC = BD ( 2 cạnh tương ứng)
c) bạn tự làm ạ . Mình bận
a) +) Xét \(\Delta\)ABM và \(\Delta\)DCM có
BM = CM ( gt)
\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đỉnh )
AM = DM ( gt)
=> \(\Delta\)ABM = \(\Delta\)DCM ( c-g-c)
b) +) Xét \(\Delta\)AMC và \(\Delta\)DMB có
AM = DM ( gt)
\(\widehat{AMC}=\widehat{BMD}\) ( 2 góc đối đỉnh )
MC = MB ( gt)
=> \(\Delta\)AMC = \(\Delta\)DMB ( c-g-c)
=> AC = DB ( 2 cạnh tương ứng )
và \(\widehat{ACM}=\widehat{DBM}\) ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> AC // BD
c) +) Theo câu a ta có \(\Delta\)ABM = \(\Delta\)DCM
=> \(\widehat{ABM}=\widehat{DCM}\) ( 2 góc tương ứng )
+) Xét \(\Delta\)ABC và \(\Delta\)DCB có
\(\widehat{ABM}=\widehat{DCM}\) ( cmt)
BC : cạnh chung
\(\widehat{ACM}=\widehat{DBM}\) ( cmt)
=> \(\Delta\)ABC = \(\Delta\)DCB (g-c-g)
=> \(\widehat{BAC}=\widehat{CDB}\) ( 2 góc tương ứng )
Mà \(\widehat{BAC}=90^o\) ( gt)
=> \(\widehat{CDB}=90^o\)
Học tốt
Takigawa Maraii
a) Tam giác AMB = tam giác CMD theo trường hợp C.G.C
b) Tứ giác ABDC là hình bình hành vì có hai đường chéo AD và BC cắt nhau ở trung điểm mỗi đường.
Suy ra AC song song và bằng BD
c) Do ABDC là hình bình hành và góc A bằng 1 vuông nên ABDC là hình chữ nhật => Tam giác ABC = tam giác DCB
=> Góc BDC = 1 vuông
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC=BD
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét ΔMBD và ΔMCA có
MB=MC
\(\widehat{BMD}=\widehat{CMA}\)
MD=MA
Do đó: ΔMBD=ΔMCA
=>\(\widehat{MBD}=\widehat{MCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//AC
c: Xét ΔDKB vuông tại K và ΔAHC vuông tại H có
DB=AC
\(\widehat{DBK}=\widehat{ACH}\)
Do đó: ΔDKB=ΔAHC
=>BK=CH
d: Xét tứ giác ABCE có
I là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//CE và AB=CE
Ta có; ΔMAB=ΔMDC
=>AB=DC
Ta có: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//DC
Ta có: AB//DC
AB//CE
DC,CE có điểm chung là C
Do đó: D,C,E thẳng hàng
ta có: AB=CD
AB=CE
Do đó: DC=CE
mà D,C,E thẳng hàng
nên C là trung điểm của DE
Cháu trai của tôi thường xuyên kể rằng có một người phụ nữ mặc váy đỏ xuất hiện trong phòng ngủ của nó vào ban đêm. Tên của cô gái đó là Frannie và cô ấy luôn hát ru cho những đứa bé… Những câu chuyện ma mị, hãi hùng này đã từng được lan truyền rất nhiều nơi, phổ biến đến nỗi nền văn hóa nào cũng xuất hiện người phụ nữ này, thậm trí khu vực miền Trung và Tây Nguyên Việt Nam, ai cũng biết đến.