K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2019

6 tháng 12 2019

ik ch hk tg cân

1 tháng 2 2017

A) tam giac aeb ko can duoc

phải là tam giác aed cân chứ bn

1 tháng 2 2017

HINH BN TU VE NHA

a)CÓ AB=AC( GT)

=>TAM GIAC ABC CAN TAI A( DN TAM GIAC CAN)

=> GÓC ABC = GÓC ACB( ĐN TAM GIÁC CÂN)(1)

CÓ BD LÀ TIA PHÂN GIÁC CỦA GÓC B

=>GÓC ABD = GÓC DBC(2)

CÓ CE LÀ TIA PHÂN GIÁC CỦA GÓC ACB

=>GÓC ACE = GÓC ECB(3)

TỪ (1) (2) (3)=>GÓC ABD = GÓC DBC = GÓC ACE = GÓC ECB

XÉT TAM GIÁC ABD VÀ TAM GIÁC ACE CO:

GÓC A CHUNG

AB=AC(GT)

GÓC ABD = GÓC ACE(CMT)

=>TAM GIÁC ABD = TAM GIÁC ACE( G-C-G)

=>AE=AD(2 CẠNH TƯƠNG ỨNG)

=>TAM GIAC AED CAN TAI A( DN TAM GIAC CAN)

b) CÓ TAM GIÁC AED CÂN TẠI A(CM Ở CÂU a)

SUY RA GÓC AED = GÓC ADE( DN TAM GIÁC CÂN)(1)

CÓ GÓC ABC = GÓC ACB( CM Ở CÂU a )                 (2)

MÀ 2 TAM GIÁC NÀY ĐỀU CÂN TẠI A

=> GÓC AED = GÓC ABC ( GÓC ADE = GÓC ACB)

MÀ 2 GÓC NÀY NẰM Ở VỊ TRÍ ĐỒNG VỊ

=>DE//BC( DHNB 2 ĐƯỜNG THẲNG //)

CAU c) DE = BE = DC CHU( THEO M NGHI THUI)

NHO KIK CHO M NHA ( ĐÓ LÀ LỜI CẢM ƠN)

27 tháng 2 2019

ai làm nhanh nhất tui tk

13 tháng 7 2020

a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)

=> DM=NE

b) Ta có

\(\Delta MDI\perp D\)=> DMI+MID=90 độ

\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ

mà MID=NEI đối đỉnh

=> DMI=ENI

\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)

=> IM=ỊN

=> BC cắt MN tại I là trung Điểm của MN

c) Gọi H là chân đường zuông góc kẻ từ A xuống BC

=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )

=> góc HAB= góc HAC

Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I

=> tam giác OAB= tam giác OAC (c-g-c)(1)

=> góc OBA = góc OCA ; OC=OB

tam giác OBM= tam giác OCN (c-g-c)

=> góc OBM=góc OCN (2)

từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC

=> O luôn cố đinhkj

=> DPCM

1 tháng 3 2020

a, Ta có: góc ABE = góc EBC = góc ABC/2 

góc ACD = góc DCB = góc ACB/2

mà góc ABC = góc ACB (tg ABC cân tại A)

=> góc ABE = góc EBC = góc ACD = góc DCB

Xét tg ABE và tg ACD có:

góc A chung

AB = AC (tg ABC cân tại A)

góc ABE = góc ACD (cmt)

=>tg ABE = tg ACD (g.c.g)

=> AE=AD

=>tg AED cân tại A

b, Xét tg ABC cân tại A có: góc ABC = góc ACB = (180 độ - góc A)/2

Xét tg AED cân tại A có: góc ADE = góc AED =(180 độ - góc A)/2

=> góc ABC = góc ADE

Mà 2 góc này ở vị trí đồng vị

=>DE//BC

c, DE//BC => góc BED = góc EBC (slt) ; góc CDE = góc DCB (slt)

=> góc BED = góc DBE (góc DBE = góc EBC)

=> tg BDE cân tại D => BE = ED (1)

DE//BC =>  góc CDE = góc DCB (slt)

=> góc CDE = góc DCE (góc DCE = góc DCB)

=> tg DEC cân tại E => ED = DC (2)

Từ (1),(2)=>đpcm

1 tháng 3 2020

Hình vẽ: 

A B C E F 1 2 1 1 2

\(\widehat{B_2}=\frac{180^0-\widehat{A}}{4};\widehat{C_2}=\frac{180^0-\widehat{A}}{4}\)

\(\Rightarrow\widehat{B_2}=\widehat{C_2}\)

\(\Rightarrow\Delta BCE=\Delta CBD\left(g.c.g\right)\)

\(\Rightarrow\widehat{B}=\widehat{C}\)( tính chất tam giác cân )

BC là cạnh chung

\(\widehat{C_2}=\widehat{B_2}\left(cmt\right)\)

\(\Rightarrow BE=DC\)( 2 cạnh tương ứng )

\(AB=AC\)( tam giác ABC cân tại A )

\(AE=AB-BE,AD=AC-DC\)

\(\Rightarrow AE=AD\)

\(\Rightarrow\Delta ADE\)cân tại A

\(\widehat{E_1}=\frac{180^0-\widehat{A}}{2};\widehat{B}=\frac{180^0-\widehat{A}}{2}\)

\(\Rightarrow\widehat{E_1}=\widehat{B}\)( 2 góc đồng vị )

\(\Rightarrow ED//BC\)

\(\Rightarrow\widehat{B_2}=\widehat{EDB}\left(slt\right)\)

mà \(\widehat{B_1}=\widehat{B_2}\)( vì BD là tia phân giác )

\(\Rightarrow\widehat{B_1}=\widehat{EDB}\)

\(\Rightarrow\Delta EBD\)cân tại E, ta có: 

\(BE=ED\)

mà \(BE=DC\)

\(\Rightarrow BE=ED=DC\)