Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HINH BN TU VE NHA
a)CÓ AB=AC( GT)
=>TAM GIAC ABC CAN TAI A( DN TAM GIAC CAN)
=> GÓC ABC = GÓC ACB( ĐN TAM GIÁC CÂN)(1)
CÓ BD LÀ TIA PHÂN GIÁC CỦA GÓC B
=>GÓC ABD = GÓC DBC(2)
CÓ CE LÀ TIA PHÂN GIÁC CỦA GÓC ACB
=>GÓC ACE = GÓC ECB(3)
TỪ (1) (2) (3)=>GÓC ABD = GÓC DBC = GÓC ACE = GÓC ECB
XÉT TAM GIÁC ABD VÀ TAM GIÁC ACE CO:
GÓC A CHUNG
AB=AC(GT)
GÓC ABD = GÓC ACE(CMT)
=>TAM GIÁC ABD = TAM GIÁC ACE( G-C-G)
=>AE=AD(2 CẠNH TƯƠNG ỨNG)
=>TAM GIAC AED CAN TAI A( DN TAM GIAC CAN)
b) CÓ TAM GIÁC AED CÂN TẠI A(CM Ở CÂU a)
SUY RA GÓC AED = GÓC ADE( DN TAM GIÁC CÂN)(1)
CÓ GÓC ABC = GÓC ACB( CM Ở CÂU a ) (2)
MÀ 2 TAM GIÁC NÀY ĐỀU CÂN TẠI A
=> GÓC AED = GÓC ABC ( GÓC ADE = GÓC ACB)
MÀ 2 GÓC NÀY NẰM Ở VỊ TRÍ ĐỒNG VỊ
=>DE//BC( DHNB 2 ĐƯỜNG THẲNG //)
CAU c) DE = BE = DC CHU( THEO M NGHI THUI)
NHO KIK CHO M NHA ( ĐÓ LÀ LỜI CẢM ƠN)
a) Xét \(\Delta MDB=\Delta NEC\left(c-g-c\right)\)
=> DM=NE
b) Ta có
\(\Delta MDI\perp D\)=> DMI+MID=90 độ
\(\Delta NEI\perp E\)=> góc ENI+NIE=90 độ
mà MID=NEI đối đỉnh
=> DMI=ENI
\(=>\Delta MDI=\Delta NEI\left(c-g-c\right)\)
=> IM=ỊN
=> BC cắt MN tại I là trung Điểm của MN
c) Gọi H là chân đường zuông góc kẻ từ A xuống BC
=> tam giác AHB = tam giác AHC( ch, cạnh góc zuông )
=> góc HAB= góc HAC
Gọi O là giao điểm của AH zới đường thẳng zuông góc zới MN kẻ từ I
=> tam giác OAB= tam giác OAC (c-g-c)(1)
=> góc OBA = góc OCA ; OC=OB
tam giác OBM= tam giác OCN (c-g-c)
=> góc OBM=góc OCN (2)
từ 1 zà 2 suy ra OCA=OCN =90 độ do OC zuông góc zới AC
=> O luôn cố đinhkj
=> DPCM
a, Ta có: góc ABE = góc EBC = góc ABC/2
góc ACD = góc DCB = góc ACB/2
mà góc ABC = góc ACB (tg ABC cân tại A)
=> góc ABE = góc EBC = góc ACD = góc DCB
Xét tg ABE và tg ACD có:
góc A chung
AB = AC (tg ABC cân tại A)
góc ABE = góc ACD (cmt)
=>tg ABE = tg ACD (g.c.g)
=> AE=AD
=>tg AED cân tại A
b, Xét tg ABC cân tại A có: góc ABC = góc ACB = (180 độ - góc A)/2
Xét tg AED cân tại A có: góc ADE = góc AED =(180 độ - góc A)/2
=> góc ABC = góc ADE
Mà 2 góc này ở vị trí đồng vị
=>DE//BC
c, DE//BC => góc BED = góc EBC (slt) ; góc CDE = góc DCB (slt)
=> góc BED = góc DBE (góc DBE = góc EBC)
=> tg BDE cân tại D => BE = ED (1)
DE//BC => góc CDE = góc DCB (slt)
=> góc CDE = góc DCE (góc DCE = góc DCB)
=> tg DEC cân tại E => ED = DC (2)
Từ (1),(2)=>đpcm
Hình vẽ:
\(\widehat{B_2}=\frac{180^0-\widehat{A}}{4};\widehat{C_2}=\frac{180^0-\widehat{A}}{4}\)
\(\Rightarrow\widehat{B_2}=\widehat{C_2}\)
\(\Rightarrow\Delta BCE=\Delta CBD\left(g.c.g\right)\)
\(\Rightarrow\widehat{B}=\widehat{C}\)( tính chất tam giác cân )
BC là cạnh chung
\(\widehat{C_2}=\widehat{B_2}\left(cmt\right)\)
\(\Rightarrow BE=DC\)( 2 cạnh tương ứng )
\(AB=AC\)( tam giác ABC cân tại A )
\(AE=AB-BE,AD=AC-DC\)
\(\Rightarrow AE=AD\)
\(\Rightarrow\Delta ADE\)cân tại A
\(\widehat{E_1}=\frac{180^0-\widehat{A}}{2};\widehat{B}=\frac{180^0-\widehat{A}}{2}\)
\(\Rightarrow\widehat{E_1}=\widehat{B}\)( 2 góc đồng vị )
\(\Rightarrow ED//BC\)
\(\Rightarrow\widehat{B_2}=\widehat{EDB}\left(slt\right)\)
mà \(\widehat{B_1}=\widehat{B_2}\)( vì BD là tia phân giác )
\(\Rightarrow\widehat{B_1}=\widehat{EDB}\)
\(\Rightarrow\Delta EBD\)cân tại E, ta có:
\(BE=ED\)
mà \(BE=DC\)
\(\Rightarrow BE=ED=DC\)