Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{AC-CN}{AC}=\dfrac{4-3}{4}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
\(M\in AB\)(gt)
\(N\in AC\)(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
a: Xét tứ giác AEMF có
góc AEM=góc AFM=góc FAE=90 độ
nên AEMF là hình chữ nhật
b: \(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot4\cdot6=2\cdot6=12\left(cm^2\right)\)
1: Xét ΔABC có DE//BC
nên AE/AC=AD/AB
=>AE/8=1/3
=>AE=8/3(cm)
2:
Xét ΔABC có DE//BC
nên DE/BC=AD/AB
=>DE/10=1/3
=>DE=10/3(cm)
Xét tứ giác BDEF có
BD//EF
BF//DE
Do đó: BDEF là hình bình hành
=>BF=DE=10/3(cm)
3:
AD/AB=1/3
AE/AC=1/3
DE/BC=1/3
Do đó: AD/AB=AE/AC=DE/BC
a) Xét tam giác \(ABC\) có \(B'C'//BC\) nên theo định lí Thales ta có:
\(\frac{{AB'}}{{AB}} = \frac{{AC'}}{{AC}} \Rightarrow \frac{2}{6} = \frac{{AC'}}{8}\). Do đó, \(AC' = \frac{{2.8}}{6} = \frac{8}{3}\left( {cm} \right)\).
Vậy \(AC' = \frac{{16}}{3}cm\).
b) Xét tam giác \(ABC\) có \(C'D//AB\) nên theo định lí Thales ta có:
\(\frac{{BD}}{{BC}} = \frac{{AC'}}{{AC}} \Rightarrow \frac{{BD}}{{10}} = \frac{{\frac{8}{3}}}{8}\). Do đó, \(BD = \frac{{10.\frac{8}{3}}}{8} = \frac{{10}}{3}\left( {cm} \right)\).
Vậy \(BD = \frac{{10}}{3}cm\).
Ta có: \(BB' = AB - AB' = 6 - 2 = 4cm\)
Vì \(\left\{ \begin{array}{l}B'C'//BC\\C'D//AB\end{array} \right. \Rightarrow \left\{ \begin{array}{l}B'C'//BD\\C'D//B'B\end{array} \right.\) (do \(D \in BC;B' \in AB\))
Xét tứ giác \(B'C'DB\) có
\(\left\{ \begin{array}{l}B'C'//BD\\C'D//B'B\end{array} \right. \Rightarrow \) tứ giác \(B'C'DB\) là hình bình hành (dấu hiệu nhận biết)
\( \Rightarrow \left\{ \begin{array}{l}B'C' = BD = \frac{{10}}{3}cm\\BB' = C'D = 4cm\end{array} \right.\) (tính chất hình bình hành)
c) Ta có: \(\frac{{AB'}}{{AB}} = \frac{2}{6} = \frac{1}{3};\frac{{AC'}}{{AC}} = \frac{{\frac{8}{3}}}{8} = \frac{1}{3};\frac{{BC'}}{{BC}} = \frac{{\frac{{10}}{3}}}{{10}} = \frac{1}{3}\)
Do đó, \(\frac{{AB'}}{{AB}} = \frac{{AC'}}{{AC}} = \frac{{B'C'}}{{BC}}\).
a, Xét tứ giác MNPB có:
MN//PB (Vì MN//BC và P ϵ BC)
MB//NP (Vì AB//NP và M ϵ AB)
=> Tứ giác MNPB là hbh
b, Ta có:
M là trung điểm AB
MN//BC
=> MN là đường trung bình của tam giác ABC
=> N là trung điểm AC, MN=BC/2 và MN//BC
Xét 2 tam giác AMN và NPC có
AM=NP (Vì AM=BM, BM=NP)
AN=NC
MN=PC ( Vì MN=BC/2, MN=BP)
=> Tam giác AMN = Tam giác NPC (c.c.c)
a: Xét tứ giác AEMF có
AE//MF
AF//ME
góc EAF=90 độ
Do đó: AEMF là hình chữ nhật
b: \(S_{ABC}=\dfrac{1}{2}\cdot6\cdot4=3\cdot4=12\left(cm^2\right)\)
a) MN // BC. Áp dụng định lí Ta-let, ta có :
\(\frac{BM}{AB}=\frac{CN}{AC}\)hay \(\frac{2}{8}=\frac{CN}{10}\)\(\Rightarrow CN=2,5\)
b) MN // BP ; NP // BM nên tứ giác MNPB là hình bình hành
\(\Rightarrow\Delta BMN=\Delta NPB\left(c.g.c\right)\)hay \(\Delta BMN\approx\Delta NPB\)
c) BM = 2 ; AB = 8 nên AM = 6
MNPB là hình bình hành nên NP = BM
Xét \(\Delta NPC\)và \(\Delta AMN\)có :
\(\widehat{PNC}=\widehat{MAN}\left(dv\right);\widehat{NPC}=\widehat{AMN}\left(=\widehat{ABC}\right)\)
\(\Rightarrow\)\(\Delta NPC\)\(\approx\)\(\Delta AMN\)( g.g )
\(\Rightarrow\)\(\frac{S_{NPC}}{S_{AMN}}=\left(\frac{NP}{AM}\right)^2=\left(\frac{BM}{AM}\right)^2=\left(\frac{2}{6}\right)^2=\frac{1}{9}\)