K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải: Đề bài có vẻ thừa dữ kiện.

Theo tính chất tia phân giác:

a)

$\frac{S_{ADB}}{S_{ADC}}=\frac{BD}{DC}=\frac{6}{4,5}=\frac{4}{3}$

b) 

$\frac{S_{ADB}}{S_{ADC}}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{7-3}{3}=\frac{4}{3}$

4 tháng 2 2017

Tam giác trên có 3 cạnh 6,8,10 là bộ ba Py-ta-go => Đây là tam giác vuông có cạnh huyền =10

  => S= \(\frac{6.8}{2}\)=24(cm\(^2\))

a: Xét ΔABC có 

P là trung điểm của AC

N là trung điểm của BC

Do đó: PN là đường trung bình của ΔBAC

Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)

mà M\(\in\)AB và \(AM=\dfrac{AB}{2}\)

nên PN//AM và PN=AM

Xét tứ giác AMNP có 

PN//AM

PN=AM

Do đó: AMNP là hình bình hành

mà \(\widehat{PAM}=90^0\)

nên AMNP là hình chữ nhật

28 tháng 8 2021

bạn/anh/chị giải nốt giúp mình/em được ko ạ?

a: Xét ΔCAB có CP/CA=CN/CB

nên PN//AB và PN=AB/2

=>PN//AM và PN=AM

=>AMNP là hình bình hành

mà góc PAM=90 độ

nên AMNP là hình chữ nhật

b: \(AC=\sqrt{10^2-8^2}=6\left(cm\right)\)

AH=6*8/10=4,8cm

 

17 tháng 12 2020

a) Xét ΔABC có 

F là trung điểm của AC(gt)

M là trung điểm của BC(gt)

Do đó: FM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒FM//AB và \(FM=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà E∈AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)

nên FM//AE và FM=AE

Xét tứ giác AEMF có 

FM//AE(cmt)

FM=AE(cmt)

Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AEMF có \(\widehat{FAE}=90^0\)(ΔABC vuông tại A)

nên AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

 

8 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

S D E C H = 22   c m 2 ;   S B D E F = 20   c m 2 ;   S D E F H = 12   c m 2

4 tháng 7 2018

b,

Theo định lý Py-ta-go ta có:

+) 

Trong Tam giác ABC vuông tại B

Ta có: 

AB^2+BC^2=AC^2

=> AC^2=100

=> AC = 10

4 tháng 7 2018

a,

Xét tam giác BAC và QEC có:

Góc ABC= Góc CQE

Góc C chung

Góc CQE= Góc CAB ( Vì Góc A + Góc B + Góc C = Góc CQE + Góc C + Góc QEC )

=> BAC đồng dạng với QEC

(đpcm)