K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

P là trung điểm của AC

N là trung điểm của BC

Do đó: PN là đường trung bình của ΔBAC

Suy ra: PN//AB và \(PN=\dfrac{AB}{2}\)

mà M\(\in\)AB và \(AM=\dfrac{AB}{2}\)

nên PN//AM và PN=AM

Xét tứ giác AMNP có 

PN//AM

PN=AM

Do đó: AMNP là hình bình hành

mà \(\widehat{PAM}=90^0\)

nên AMNP là hình chữ nhật

28 tháng 8 2021

bạn/anh/chị giải nốt giúp mình/em được ko ạ?

17 tháng 12 2020

a) Xét ΔABC có 

F là trung điểm của AC(gt)

M là trung điểm của BC(gt)

Do đó: FM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒FM//AB và \(FM=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà E∈AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)

nên FM//AE và FM=AE

Xét tứ giác AEMF có 

FM//AE(cmt)

FM=AE(cmt)

Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AEMF có \(\widehat{FAE}=90^0\)(ΔABC vuông tại A)

nên AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

 

10 tháng 12 2020

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay \(BC=\sqrt{100}=10cm\)

Xét ΔABC có AH là đường cao ứng với cạnh BC nên 

\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay \(AH=\dfrac{48}{10}=4.8cm\)

Vậy: AH=4,8cm

b) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)(ΔABC vuông tại A, E∈AB, F∈AC)

\(\widehat{AEH}=90^0\)(HE⊥AB)

\(\widehat{AFH}=90^0\)(HF⊥AC)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

⇒AH=EF(Hai đường chéo của hình chữ nhật AEHF)

mà AH=4,8cm(cmt)

nên EF=4,8cm

Vậy: EF=4,8cm

 

Bài 2: 

a: H là trung điểm của BC

nên HB=HC=2,5(cm)

\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)

\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

27 tháng 11 2016

Các bạn làm ơn giải chi tiết ra hộ mình với!! Đa tạ

 

27 tháng 11 2016

bài này dễ thế ko bt làm maxxxxxxxxxxxxxxxxxxxxx ngu

5 tháng 1 2017

Hình bạn tự vẽ chắc dc rùi nhé mình chỉ giải thôi 

Bài làm 

a/ \(\Delta\)ABC cân tại A có AM là đường trung tuyến ứng với cạnh BC ( M là trung điểm BC )

Nên  Am cũng là đường cao \(\Rightarrow\)AM \(⊥\)BC

  vì M là trung điểm của BC \(\Rightarrow\)BM= MC = \(\frac{1}{2}BC=\frac{1}{2}.6=3cm\)

Xét tam giác AMB vuông tại M có:

AM2 + BM2 = AB2

AM2 + 32     = 52

AM2 + 9     =  25

AM2           =  25 - 9 =16

\(\Rightarrow\)AM= \(\sqrt{16}=4\)

Vậy S ABC = \(\frac{1}{2}AM.BC\)\(\frac{1}{2}4.6=12\)

b/ Xét tứ giác AMCN có :

OA=OC (gt)

OM=ON ( N đối xứng với M qua O )

\(\Rightarrow\)Tứ giác AMCN là hình bình hành

Mà AM \(⊥\)MC ( chứng minh ở câu a ) \(\Rightarrow\)\(\widehat{AMC}\)= 90 0

Hình bình hành AMCN có \(\widehat{AMC}=90\)nên AMCN là hình chữ nhật

C/ Để AMNC là hình vuông thì AM phải bằng MC ( Vì theo lý thuyết hcn có 2 cạnh kề bằng nhau là hình vuông )

Nếu tam giác ABC vuông cân tại A thì có :

AM là đường trung tuyến ứng với cạnh huyền BC nên BM = AM = MC 

Vậy để tứ giác AMCN là hình vuông thì tam giác ABC phải là tam giác vuông cân tại A