Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
Nếu BC2 = AC2 + AB2 thì tam giác ABC vuông tại A. (Pytago)
ta có: 7,52 = 4,52 + 62 => tam giác ABC vuông tại A.
Tam giác ABC vuông tại A, đường cao AH nên: AH.BC = AC.AB <=> AH = (AC.AB)/BC <=> AH = 3,6 cm
Ta có: AB2 = BC.BH <=> BH = AB2 /BC <=> 36/7,5 = 4,8 cm
=> HC = BC - BH = 7.5 - 4.8 = 2.7 cm
Cho tam giác ABC, đường cao AH \(\left(H\in BC\right)\) biết góc B=45độ; HB= 20cm; HC= 21cm. Tính AC
may bai tre trau ma lam deo dc ak.
\(AH⊥BC\)
B=45 do
suy ra BAH=45 do
tam giac BAH can o H
HA=HB=20
xet tam giac AHC vuong o H
AC^2=AH^2+HC^2=841
AC=29
Tam giác AHB vuông tại H có góc B=45độ.
=> AH=HB=20cm.
Áp dụng ĐL Pitago, ta có:
AC2=AH2+HC2=400+441=841
=> AC=29cm
Giải tam giác nhé em, ta vần vận dụng định lý Pitago và các hệ thức lượng.
Áp dụng đl Pitago ta có: \(BC=\sqrt{AB^2+AC^2}=5\)
Áp dụng hệ thức lượng \(BH=\frac{AB^2}{BC}=1,8\Rightarrow CH=BC-BH=3,2\)
\(AH=\sqrt{BH.CH}=2,4\)
\(sinB=\frac{AC}{BC}=0,8\Rightarrow B\approx53^08'\Rightarrow C\approx36^052'\)
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AH = 6cm, BH = 4,5cm.Tính AB, AC, BC,HC. b) Biết AB = 6cm, BH = 3cm.Tính AH và tính chu vi của các tam giác vuông trong hình.
Bài 1:
\(HC=\dfrac{AH^2}{HB}=\dfrac{36}{4.5}=8\left(cm\right)\)
BC=BH+CH=12,5cm
\(AB=\sqrt{4.5\cdot12.5}=7.5\left(cm\right)\)
\(AC=\sqrt{8\cdot12.5}=10\left(cm\right)\)