K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DD
Đoàn Đức Hà
Giáo viên
28 tháng 5 2021
\(AD=\frac{1}{3}\times CD\Rightarrow S_{ABF}=\frac{1}{3}\times S_{BFC}\)
\(BE=\frac{1}{3}\times AB\Rightarrow S_{BEF}=\frac{1}{3}\times S_{ABF}\)
\(\Rightarrow S_{BEF}=\frac{1}{3}\times\frac{1}{3}\times S_{BFC}=\frac{1}{9}\times S_{BFC}\Rightarrow S_{BEF}=\frac{1}{10}\times S_{BEC}\)
\(BE=\frac{1}{3}\times AB\Rightarrow S_{BEC}=\frac{1}{3}\times S_{ABC}\)
\(\Rightarrow S_{BEF}=\frac{1}{10}\times\frac{1}{3}\times S_{ABC}=\frac{1}{30}\times S_{ABC}\)
\(\Rightarrow S_{BAC}=30\times S_{BEF}=5400\left(cm^2\right)\)
20 tháng 7 2015
Ai trả lời giúp mk đi , cả lời giải và phép tính mai mk fai nộp rồi
Ta thấy tam giác ADC và tam giác ABC có chung chiều cao hạ từ đỉnh C nên \(\frac{S_{ADC}}{S_{ABC}}=\frac{AD}{AB}\)
Ta thấy tam giác BEC và tam giác BAC có chung chiều cao hạ từ đỉnh B nên \(\frac{S_{BEC}}{S_{BAC}}=\frac{CE}{AC}\)
Lại có AD = CE, AB = AC nên \(\frac{S_{ADC}}{S_{ABC}}=\frac{S_{BEC}}{S_{BAC}}\Rightarrow S_{ADC}=S_{BEC}\)
\(\Rightarrow S_{ADC}-S_{MEC}=S_{BEC}-S_{MEC}\Rightarrow S_{ADME}=S_{BMC}\Rightarrow S_1=S_2\)
Từ đó ta có: \(\frac{S_1}{S_2\times2+S_1\times3}=\frac{S_1}{S_1\times2+S_1\times3}=\frac{S_1}{S_1\times5}=\frac{1}{5}\)
Bài giải :
Ta thấy tam giác ADC và tam giác ABC có chung chiều cao hạ từ đỉnh C nên SADCSABC =ADAB
Ta thấy tam giác BEC và tam giác BAC có chung chiều cao hạ từ đỉnh B nên SBECSBAC =CEAC
Lại có AD = CE, AB = AC nên SADCSABC =SBECSBAC ⇒SADC=SBEC
⇒SADC−SMEC=SBEC−SMEC⇒SADME=SBMC⇒S1=S2
Từ đó ta có: S1S2×2+S1×3 =S1S1×2+S1×3 =S1S1×5 =15