K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

xét tam giác ADB và tam giác ADC có:

AB=AC(gt)

AM là cạnh chung

BD=DC(D là trg điểm cr BC)

=>tam giác ADB = tam giác ADC(ccc)

Từ tam giác ADB = tam giác ADC

=>góc ADB = góc ADC

mà góc ADB + góc ADC = 180 độ (kề bù)

=> góc ADC = góc ADB = 180/2 = 90 độ

=> AD vuông góc với BC

6 tháng 1 2017

bày với

10 tháng 1 2022

10 tháng 1 2022

TK

 

20 tháng 12 2020

giúp mình ik mn mình sắp thi rồigianroikhocroi

20 tháng 12 2020

mn nhớ cho mình hình vẽ nữa nha

 

29 tháng 11 2021

a) D là trung điểm của BC (gt).

=> DB = DC.

Xét tg ADB và tg ADC có: 

DB = DC (cmt).

AB = AC (gt).

AD chung.

=> tg ADB = tg ADC (c - c - c).

b) Xét tg ABC cân tại A (AB = AC):

AD là trung tuyến (D là trung điểm của BC).

=> AD là tia phân giác góc BAC.      (tính chất các đường trong tg cân).

c) Xét tg ABC cân tại A (AB = AC):

AD là trung tuyến (D là trung điểm của BC).

=> AD là đường cao. (tính chất các đường trong tg cân).

=> AD vuông góc với BC.

22 tháng 3 2022

A B C D E F

a)Xét \(\Delta ABD\) và \(\Delta ACD\) có :

    \(BD=DC\)

     \(\widehat{ABD}=\widehat{ACD}\left(\Delta ABCcân\right)\)

     AB= AC

=>  \(\Delta ABD\) = \(\Delta ACD\) (c-g-c)

b) Vì \(\Delta ABC\) cân tại A nên AD vừa là đường trung tuyến vừa là đường cao

=> \(AD\perp BC\)

*Nếu chx học cách trên thì bạn xem cách dưới đây"

Vì  \(\Delta ABD\) = \(\Delta ACD\) nên \(\widehat{ADB}=\widehat{ADC}\)

mà \(\widehat{ADB}+\widehat{ADC}=180^o\)

=> \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^o}{2}=90^o\)

=> \(AD\perp BC\)

c)Xét \(\Delta EBD\) vuông tại E và \(\Delta FCD\) vuông tại F có :

\(\widehat{EBD}=\widehat{FCD}\)

\(BD=CD\)

=> \(\Delta EBD=\Delta FCD\left(ch-gn\right)\)

d) Vì D là trung điểm của BC nên  \(DC=\dfrac{BC}{2}=\dfrac{12}{2}=6cm\)

Xét \(\Delta ADC\) vuông tại D có :

\(AC^2=AD^2+DC^2\)

\(100=AD^2+36\)

\(AD^2=100-36\)

\(AD^2=64\)

AD=8 cm

ΔAHD vuông tại H

nên AH<AD

Vì góc ADH<90 độ

=>góc ADM>90 độ

=>AD<AM

=>AH<AD<AM

=>AD nằm giữa AH và AM

9 tháng 2 2022

a. Xét tam giác  ABD và tam giác ACD

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

AD : cạnh chung

Vậy tam giác  ABD = tam giác ACD ( c.g.c )

b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao

=> AD vuông BC

CD = BC : 2 = 12 : 2 =6cm

c.áp dụng định lý pitago vào tam giác vuông ADC 

\(AC^2=AD^2+DC^2\)

\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)

d.Xét tam giác vuông BDE và tam giác vuông CDF có:

AD = CD ( gt )

góc B = góc C

Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)

=> DE = DF ( 2 cạnh tương ứng )

=> tam giác DEF cân tại D

9 tháng 2 2022

a) Tam giác ABD và tam giác ACD có:

     BD = CD (Vì D là trung điểm của BC)

     góc B = góc C

                              (vì tam giác ABC cân tại A)

     AB = AC

  Do đó: am giác ABD = tam giác ACD (c.g.c)

   Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)

b) Vì góc ADB = góc ADC (cmt) mà góc ADB +  góc ADC 180 độ (2 góc kề bù)

    nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC

c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)

                  mà BC = 12 cm

       => CD = 12 /2 = 6 cm

 Vì AD vuông góc với BC nên tam giác ADC vuông tại D 

   => AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)

    => 10^2 = AD ^ 2 + 6 ^2

   => AD^2 = 64

   => AD = 8 (cm) (vì AD > 0 )

 d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé

       => DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)

12 tháng 7

Cj ơi cj làm đc bài này chx ạ, cứu e vs cj=(((((

a: Xét ΔABD và ΔACD có 
AB=AC

AD chung

BD=CD
Do đó: ΔABD=ΔACD

b: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là tia phân giác của góc BAC

c: Ta có: ΔABC cân tại A

mà AD là đường trung tuyến

nên AD là đường cao

=>AD⊥BC

mà d//BC

nên AD⊥d

19 tháng 2 2022

a) Xét ΔΔABD và ΔΔACD có:

        AB = AC (gt)

        AD: cạnh chung

        BD = CD (D là trung điểm của BC)

⇒Δ⇒ΔABD = ΔΔACD (c.c.c)

b)b) Ta có: ΔΔABD = ΔΔACD (theo ý a)

\(\widehat{BAD}\)=\(\widehat{CAD}\)  (2gocs tương ứng )

 AD là tia phân giác của \(\widehat{BAC}\)

c) Ta có: ΔΔABD = ΔΔACD (theo ý a)

⇒ \(\widehat{ADB}\)=\(\widehat{ADC}\)(2 góc tương ứng )

mà \(\widehat{ADB}\)  +  \(\widehat{ADC}\)=18001800( 2 góc kề bù ) 

\(\widehat{ADB}\)=\(\widehat{ADC}\)= 900900

⇒ AD ⊥ BC

Lại có: d // BC (gt)   AD  d