Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có hình vẽ:
A B C M D I
a/ Xét tam giác ABM và tam giác ACM có:
AM: cạnh chung
AB = AC (GT)
BM = MC (GT)
=> tam giác ABM = tam giác ACM (c.c.c)
b/ Xét tam giác ACM và tam giác BDM có:
\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)
BM = MC (GT)
AM = MD (GT)
=> tam giác ACM = tam giác BDM (c.g.c)
=> AC = BD (2 cạnh tương ứng)
c/ Xét tam giác ABM và tam giác CDM có:
BM = MC (GT)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = MD (GT)
=> tam giác ABM = tam giác CDM (c.g.c)
=> \(\widehat{BAM}=\widehat{MDC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CD (đpcm)
d/ Xét tam giác AIC và tam giác ABC có:
AI = BC (GT)
\(\widehat{IAC}=\widehat{ACB}\) (vì 2 góc này so le trong theo giả thuyết có Ax // BC)
AC: cạnh chung
=> tam giác AIC = tam giác ABC (c.g.c)
=> \(\widehat{BAC}=\widehat{ACI}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // IC
Ta có: AB // CD; AB // IC => IC trùng CD
hay D,C,I thẳng hàng
không có chi..........sắp thi học kì 1 rồi, mk lo ôn bài, chắc sẽ ít trả lời câu hỏi hơn
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABM và ΔACM có
AB=AC
AM chug
BM=CM
Do đó: ΔABM=ΔACM
b:
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
Xét ΔAMC vuông tại M và ΔBMD vuông tại M có
MC=MD
MA=MB
Do đó: ΔAMC=ΔBMD
Suy ra: AC=BD
c: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của CB
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
d: Xét tứ giác ABCI có
AI//BC
AI=BC
Do đó: ABCI là hình bình hành
Suy ra: CI//AB
mà CD//AB
và CI,CD có điểm chung là C
nên C,I,D thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
DO đó: ABDC là hình bình hành
Suy ra: AB//CD
Sửa đề: c. AC//BD
a. AB=AC => \(\Delta ABC\)cân tại A => \(\widehat{B}\)= \(\widehat{C}\)
\(\Delta ACM\)và \(\Delta ABM\)có:
- AB = AC (giả thiết)
- Góc B = Góc C (Chứng minh trên)
- MC = MB (M là trung điểm của BC)
nên \(\Delta ACM\)= \(\Delta ABM\)(c.g.c)
Vậy .....
b. \(\Delta ACM\)và \(\Delta DBM\)có:
-AM = DM (giả thiết)
-góc AMC = góc BMD (đối đỉnh)
- MC = MB (lí do như câu a)
nên ....... = ........ (c.g.c)
=> AC = DB (hai cạnh tương ứng)
Vậy .....
c. \(\Delta ACM\)= \(\Delta DBM\)
=> Góc ACM = góc MBD (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong
Suy ra AC//BD
Vậy ...
Chúc bạn học tốt!