K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACM có

AB=AC

AM chug

BM=CM

Do đó: ΔABM=ΔACM

b:

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

Xét ΔAMC vuông tại M và ΔBMD vuông tại M có 

MC=MD

MA=MB

Do đó: ΔAMC=ΔBMD

Suy ra: AC=BD

c: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của CB

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

d: Xét tứ giác ABCI có

AI//BC

AI=BC

Do đó: ABCI là hình bình hành

Suy ra: CI//AB

mà CD//AB

và CI,CD có điểm chung là C

nên C,I,D thẳng hàng

14 tháng 12 2016

Ta có hình vẽ:

A B C M D I

a/ Xét tam giác ABM và tam giác ACM có:

AM: cạnh chung

AB = AC (GT)

BM = MC (GT)

=> tam giác ABM = tam giác ACM (c.c.c)

b/ Xét tam giác ACM và tam giác BDM có:

\(\widehat{AMC}=\widehat{BMD}\) (đối đỉnh)

BM = MC (GT)

AM = MD (GT)

=> tam giác ACM = tam giác BDM (c.g.c)

=> AC = BD (2 cạnh tương ứng)

c/ Xét tam giác ABM và tam giác CDM có:

BM = MC (GT)

\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

AM = MD (GT)

=> tam giác ABM = tam giác CDM (c.g.c)

=> \(\widehat{BAM}=\widehat{MDC}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // CD (đpcm)

d/ Xét tam giác AIC và tam giác ABC có:

AI = BC (GT)

\(\widehat{IAC}=\widehat{ACB}\) (vì 2 góc này so le trong theo giả thuyết có Ax // BC)

AC: cạnh chung

=> tam giác AIC = tam giác ABC (c.g.c)

=> \(\widehat{BAC}=\widehat{ACI}\) (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AB // IC

Ta có: AB // CD; AB // IC => IC trùng CD

hay D,C,I thẳng hàng

14 tháng 12 2016

không có chi..........sắp thi học kì 1 rồi, mk lo ôn bài, chắc sẽ ít trả lời câu hỏi hơn

19 tháng 12 2018

a/ Xét tg ABM và tg ACM có

AB = AC ( gt)

BM = CM ( gt)

AM chung

=> tg ABM = tg ACM (ccc)

b/ ( Trên tia đối của tia MA chứ ko phải AM nha )

Xét tg AMC và tg DMB, có

MC = MB (gt)

AM = MD ( gt)

^AMC = ^BMD ( đđ )

=> tg AMC = tg DMB ( cgc)

=> AC = BD

c/ tg ABC cân tại A có AM là đường trung tuyến

=> AM cũng là đường cao

=> AD vuông góc BC (1)

Lại có AM = MD , BM = MC ( gt) (2)

Từ (1), (2) => ABCD là hình thoi 

=> AB // CD

d/ Theo đề : AI // BC , AI = BC

=> ABCI là hình bình hành

=> AB // CI

Mà AB // BC ( cmt )

=> I , C ,D thẳng hàng

29 tháng 3 2019

Bạn hiền, tôi đây chưa học hình bình hành!!!

a)Xét △ABM và △ACM có:

AB=AC (gt)

BM=CM (gt)

AM chung

⇒△ABM = △ACM (ccc)

b)Xét △AMB và △DMC có:

AM=DM (gt)

\(\widehat{AMB}=\widehat{DMC}\)(đối đỉnh)

MB=MC (gt)

⇒△AMB =△DMC (cgc)

\(\Rightarrow\widehat{MAB}=\widehat{MDC}\) mà 2 góc này ở vị trí so le trong nên AB//CD (đpcm)

c)Xét △IAC và △BCA có:

IA=BC (gt)

\(\widehat{IAC}=\widehat{BCA}\)(so le trong)

AC chung

⇒△IAC = △BCA (cgc)

\(\Rightarrow\widehat{ICA}=\widehat{BAC}\) mà 2 góc này ở vị trí so le trong nên IC//AB

Ta có:

\(\left\{{}\begin{matrix}CD\text{//AB}\\\text{IC//AB}\end{matrix}\right.\)

⇒D, C, I thẳng hàng (đpcm)