Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
DO đó: ABDC là hình bình hành
Suy ra: AB//CD
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
DO đó: ΔABM=ΔACM
b: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//DC
\(a,\left\{{}\begin{matrix}AB=AC\\BM=MC\\AM\text{ chung}\end{matrix}\right.\Rightarrow\Delta AMB=\Delta AMC\left(c.c.c\right)\\ b,\left\{{}\begin{matrix}BM=MC\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\\ \Rightarrow\widehat{ABC}=\widehat{BCD}\\ \text{Mà 2 góc này ở vị trí slt nên }AB\text{//}CD\\ c,\left\{{}\begin{matrix}BM=MC\\\widehat{AMC}=\widehat{BMD}\\AM=MD\end{matrix}\right.\Rightarrow\Delta AMC=\Delta DMB\left(c.g.c\right)\\ \Rightarrow\widehat{ACB}=\widehat{CBD}\\ \text{Mà 2 góc này ở vị trí slt nên }AC\text{//}BD\)
a: Xét ΔABM và ΔDCM có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
=>AC=BD
c: ABDC là hình bình hành
=>AB//DC
A B C M D
a) Xét \(\Delta ABMvà\Delta DCMcó:\)
MB=MC
góc AMB=góc CMD
MA=MD
\(\Rightarrow\Delta ABM=\Delta DCM\left(c-g-c\right)\)
b) Xét \(\Delta AMCvà\Delta BMDcó:\)
MC=MB
góc AMC=góc BMD
MA=MD
\(\Rightarrow\Delta AMC=\Delta DMB\left(c-g-c\right)\)
\(\Rightarrow AC=BD\)(cặp cạnh tương ứng)
c) Theo a), \(\Delta ABM=\Delta DCM\Rightarrow\)góc ABM=góc DCM (cặp góc tương ứng)
Mà 2 này tạo với BC hai góc so le trong nên AB//CD